MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrsca Structured version   Visualization version   Unicode version

Theorem psrsca 19389
Description: The scalar field of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrsca.s  |-  S  =  ( I mPwSer  R )
psrsca.i  |-  ( ph  ->  I  e.  V )
psrsca.r  |-  ( ph  ->  R  e.  W )
Assertion
Ref Expression
psrsca  |-  ( ph  ->  R  =  (Scalar `  S ) )

Proof of Theorem psrsca
Dummy variables  f  h  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrsca.r . . 3  |-  ( ph  ->  R  e.  W )
2 psrvalstr 19363 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  ( Base `  S ) >. ,  <. ( +g  `  ndx ) ,  ( +g  `  S
) >. ,  <. ( .r `  ndx ) ,  ( .r `  S
) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  ( Base `  S )  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) Struct  <. 1 ,  9 >.
3 scaid 16014 . . . 4  |- Scalar  = Slot  (Scalar ` 
ndx )
4 snsstp1 4347 . . . . 5  |-  { <. (Scalar `  ndx ) ,  R >. }  C_  { <. (Scalar ` 
ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  R
) ,  f  e.  ( Base `  S
)  |->  ( ( { h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { x }
)  oF ( .r `  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R
) } ) )
>. }
5 ssun2 3777 . . . . 5  |-  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  R
) ,  f  e.  ( Base `  S
)  |->  ( ( { h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { x }
)  oF ( .r `  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R
) } ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  ( Base `  S ) >. ,  <. ( +g  `  ndx ) ,  ( +g  `  S
) >. ,  <. ( .r `  ndx ) ,  ( .r `  S
) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  ( Base `  S )  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } )
64, 5sstri 3612 . . . 4  |-  { <. (Scalar `  ndx ) ,  R >. }  C_  ( { <. ( Base `  ndx ) ,  ( Base `  S ) >. ,  <. ( +g  `  ndx ) ,  ( +g  `  S
) >. ,  <. ( .r `  ndx ) ,  ( .r `  S
) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  ( Base `  S )  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } )
72, 3, 6strfv 15907 . . 3  |-  ( R  e.  W  ->  R  =  (Scalar `  ( { <. ( Base `  ndx ) ,  ( Base `  S ) >. ,  <. ( +g  `  ndx ) ,  ( +g  `  S
) >. ,  <. ( .r `  ndx ) ,  ( .r `  S
) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  ( Base `  S )  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) ) )
81, 7syl 17 . 2  |-  ( ph  ->  R  =  (Scalar `  ( { <. ( Base `  ndx ) ,  ( Base `  S ) >. ,  <. ( +g  `  ndx ) ,  ( +g  `  S
) >. ,  <. ( .r `  ndx ) ,  ( .r `  S
) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  ( Base `  S )  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) ) )
9 psrsca.s . . . 4  |-  S  =  ( I mPwSer  R )
10 eqid 2622 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
11 eqid 2622 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
12 eqid 2622 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
13 eqid 2622 . . . 4  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
14 eqid 2622 . . . 4  |-  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
15 eqid 2622 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
16 psrsca.i . . . . 5  |-  ( ph  ->  I  e.  V )
179, 10, 14, 15, 16psrbas 19378 . . . 4  |-  ( ph  ->  ( Base `  S
)  =  ( (
Base `  R )  ^m  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } ) )
18 eqid 2622 . . . . 5  |-  ( +g  `  S )  =  ( +g  `  S )
199, 15, 11, 18psrplusg 19381 . . . 4  |-  ( +g  `  S )  =  (  oF ( +g  `  R )  |`  (
( Base `  S )  X.  ( Base `  S
) ) )
20 eqid 2622 . . . . 5  |-  ( .r
`  S )  =  ( .r `  S
)
219, 15, 12, 20, 14psrmulr 19384 . . . 4  |-  ( .r
`  S )  =  ( f  e.  (
Base `  S ) ,  z  e.  ( Base `  S )  |->  ( w  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  | 
y  oR  <_  w }  |->  ( ( f `  x ) ( .r `  R
) ( z `  ( w  oF  -  x ) ) ) ) ) ) )
22 eqid 2622 . . . 4  |-  ( x  e.  ( Base `  R
) ,  f  e.  ( Base `  S
)  |->  ( ( { h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { x }
)  oF ( .r `  R ) f ) )  =  ( x  e.  (
Base `  R ) ,  f  e.  ( Base `  S )  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) )
23 eqidd 2623 . . . 4  |-  ( ph  ->  ( Xt_ `  ( { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) )  =  ( Xt_ `  ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R
) } ) ) )
249, 10, 11, 12, 13, 14, 17, 19, 21, 22, 23, 16, 1psrval 19362 . . 3  |-  ( ph  ->  S  =  ( {
<. ( Base `  ndx ) ,  ( Base `  S ) >. ,  <. ( +g  `  ndx ) ,  ( +g  `  S
) >. ,  <. ( .r `  ndx ) ,  ( .r `  S
) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  ( Base `  S )  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) )
2524fveq2d 6195 . 2  |-  ( ph  ->  (Scalar `  S )  =  (Scalar `  ( { <. ( Base `  ndx ) ,  ( Base `  S ) >. ,  <. ( +g  `  ndx ) ,  ( +g  `  S
) >. ,  <. ( .r `  ndx ) ,  ( .r `  S
) >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  R ) ,  f  e.  ( Base `  S )  |->  ( ( { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  X.  { x } )  oF ( .r
`  R ) f ) ) >. ,  <. (TopSet `  ndx ) ,  (
Xt_ `  ( {
h  e.  ( NN0 
^m  I )  |  ( `' h " NN )  e.  Fin }  X.  { ( TopOpen `  R ) } ) ) >. } ) ) )
268, 25eqtr4d 2659 1  |-  ( ph  ->  R  =  (Scalar `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916    u. cun 3572   {csn 4177   {ctp 4181   <.cop 4183    X. cxp 5112   `'ccnv 5113   "cima 5117   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895    ^m cmap 7857   Fincfn 7955   1c1 9937   NNcn 11020   9c9 11077   NN0cn0 11292   ndxcnx 15854   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945  TopSetcts 15947   TopOpenctopn 16082   Xt_cpt 16099   mPwSer cmps 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-psr 19356
This theorem is referenced by:  psrlmod  19401  psrassa  19414  mpllsslem  19435  mplsca  19445  opsrsca  19483  opsrassa  19489  ply1lss  19566  opsrlmod  19616
  Copyright terms: Public domain W3C validator