Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem30 Structured version   Visualization version   Unicode version

Theorem poimirlem30 33439
Description: Lemma for poimir 33442 combining poimirlem29 33438 with bwth 21213. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimir.i  |-  I  =  ( ( 0 [,] 1 )  ^m  (
1 ... N ) )
poimir.r  |-  R  =  ( Xt_ `  (
( 1 ... N
)  X.  { (
topGen `  ran  (,) ) } ) )
poimir.1  |-  ( ph  ->  F  e.  ( ( Rt  I )  Cn  R
) )
poimirlem30.x  |-  X  =  ( ( F `  ( ( ( 1st `  ( G `  k
) )  oF  +  ( ( ( ( 2nd `  ( G `  k )
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( G `  k )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  oF  /  ( ( 1 ... N )  X.  { k } ) ) ) `  n )
poimirlem30.2  |-  ( ph  ->  G : NN --> ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
poimirlem30.3  |-  ( (
ph  /\  k  e.  NN )  ->  ran  ( 1st `  ( G `  k ) )  C_  ( 0..^ k ) )
poimirlem30.4  |-  ( (
ph  /\  ( k  e.  NN  /\  n  e.  ( 1 ... N
)  /\  r  e.  {  <_  ,  `'  <_  } ) )  ->  E. j  e.  ( 0 ... N
) 0 r X )
Assertion
Ref Expression
poimirlem30  |-  ( ph  ->  E. c  e.  I  A. n  e.  (
1 ... N ) A. v  e.  ( Rt  I
) ( c  e.  v  ->  A. r  e.  {  <_  ,  `'  <_  } E. z  e.  v  0 r ( ( F `  z
) `  n )
) )
Distinct variable groups:    f, j,
k, n, z    ph, j, n    j, F, n    j, N, n    ph, k    f, N, k    ph, z    f, F, k, z    z, N   
j, c, k, n, r, v, z, ph    f, c, F, r, v    G, c, f, j, k, n, r, v, z   
I, c, f, j, k, n, r, v, z    N, c, r, v    R, c, f, j, k, n, r, v, z    X, c, f, r, v, z
Allowed substitution hints:    ph( f)    X( j, k, n)

Proof of Theorem poimirlem30
Dummy variables  i  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzonn0 12512 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 0..^ k )  ->  i  e.  NN0 )
21nn0red 11352 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 0..^ k )  ->  i  e.  RR )
3 nndivre 11056 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  RR  /\  k  e.  NN )  ->  ( i  /  k
)  e.  RR )
42, 3sylan 488 . . . . . . . . . . . . . 14  |-  ( ( i  e.  ( 0..^ k )  /\  k  e.  NN )  ->  (
i  /  k )  e.  RR )
5 elfzole1 12478 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 0..^ k )  ->  0  <_  i )
62, 5jca 554 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 0..^ k )  ->  ( i  e.  RR  /\  0  <_ 
i ) )
7 nnrp 11842 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  k  e.  RR+ )
87rpregt0d 11878 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
k  e.  RR  /\  0  <  k ) )
9 divge0 10892 . . . . . . . . . . . . . . 15  |-  ( ( ( i  e.  RR  /\  0  <_  i )  /\  ( k  e.  RR  /\  0  <  k ) )  ->  0  <_  ( i  /  k ) )
106, 8, 9syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( i  e.  ( 0..^ k )  /\  k  e.  NN )  ->  0  <_  ( i  /  k
) )
11 elfzo0le 12511 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 0..^ k )  ->  i  <_  k )
1211adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ( 0..^ k )  /\  k  e.  NN )  ->  i  <_  k )
132adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0..^ k )  /\  k  e.  NN )  ->  i  e.  RR )
14 1red 10055 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0..^ k )  /\  k  e.  NN )  ->  1  e.  RR )
157adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  ( 0..^ k )  /\  k  e.  NN )  ->  k  e.  RR+ )
1613, 14, 15ledivmuld 11925 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0..^ k )  /\  k  e.  NN )  ->  (
( i  /  k
)  <_  1  <->  i  <_  ( k  x.  1 ) ) )
17 nncn 11028 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN  ->  k  e.  CC )
1817mulid1d 10057 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  (
k  x.  1 )  =  k )
1918breq2d 4665 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
i  <_  ( k  x.  1 )  <->  i  <_  k ) )
2019adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( 0..^ k )  /\  k  e.  NN )  ->  (
i  <_  ( k  x.  1 )  <->  i  <_  k ) )
2116, 20bitrd 268 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ( 0..^ k )  /\  k  e.  NN )  ->  (
( i  /  k
)  <_  1  <->  i  <_  k ) )
2212, 21mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( i  e.  ( 0..^ k )  /\  k  e.  NN )  ->  (
i  /  k )  <_  1 )
23 0re 10040 . . . . . . . . . . . . . . 15  |-  0  e.  RR
24 1re 10039 . . . . . . . . . . . . . . 15  |-  1  e.  RR
2523, 24elicc2i 12239 . . . . . . . . . . . . . 14  |-  ( ( i  /  k )  e.  ( 0 [,] 1 )  <->  ( (
i  /  k )  e.  RR  /\  0  <_  ( i  /  k
)  /\  ( i  /  k )  <_ 
1 ) )
264, 10, 22, 25syl3anbrc 1246 . . . . . . . . . . . . 13  |-  ( ( i  e.  ( 0..^ k )  /\  k  e.  NN )  ->  (
i  /  k )  e.  ( 0 [,] 1 ) )
2726ancoms 469 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  /\  i  e.  ( 0..^ k ) )  -> 
( i  /  k
)  e.  ( 0 [,] 1 ) )
28 elsni 4194 . . . . . . . . . . . . . 14  |-  ( j  e.  { k }  ->  j  =  k )
2928oveq2d 6666 . . . . . . . . . . . . 13  |-  ( j  e.  { k }  ->  ( i  / 
j )  =  ( i  /  k ) )
3029eleq1d 2686 . . . . . . . . . . . 12  |-  ( j  e.  { k }  ->  ( ( i  /  j )  e.  ( 0 [,] 1
)  <->  ( i  / 
k )  e.  ( 0 [,] 1 ) ) )
3127, 30syl5ibrcom 237 . . . . . . . . . . 11  |-  ( ( k  e.  NN  /\  i  e.  ( 0..^ k ) )  -> 
( j  e.  {
k }  ->  (
i  /  j )  e.  ( 0 [,] 1 ) ) )
3231impr 649 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  ( i  e.  ( 0..^ k )  /\  j  e.  { k } ) )  -> 
( i  /  j
)  e.  ( 0 [,] 1 ) )
3332adantll 750 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
i  e.  ( 0..^ k )  /\  j  e.  { k } ) )  ->  ( i  /  j )  e.  ( 0 [,] 1
) )
34 poimirlem30.2 . . . . . . . . . . . 12  |-  ( ph  ->  G : NN --> ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
3534ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) )
36 xp1st 7198 . . . . . . . . . . 11  |-  ( ( G `  k )  e.  ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( G `  k )
)  e.  ( NN0 
^m  ( 1 ... N ) ) )
37 elmapfn 7880 . . . . . . . . . . 11  |-  ( ( 1st `  ( G `
 k ) )  e.  ( NN0  ^m  ( 1 ... N
) )  ->  ( 1st `  ( G `  k ) )  Fn  ( 1 ... N
) )
3835, 36, 373syl 18 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1st `  ( G `  k
) )  Fn  (
1 ... N ) )
39 poimirlem30.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ran  ( 1st `  ( G `  k ) )  C_  ( 0..^ k ) )
40 df-f 5892 . . . . . . . . . 10  |-  ( ( 1st `  ( G `
 k ) ) : ( 1 ... N ) --> ( 0..^ k )  <->  ( ( 1st `  ( G `  k ) )  Fn  ( 1 ... N
)  /\  ran  ( 1st `  ( G `  k
) )  C_  (
0..^ k ) ) )
4138, 39, 40sylanbrc 698 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1st `  ( G `  k
) ) : ( 1 ... N ) --> ( 0..^ k ) )
42 vex 3203 . . . . . . . . . . 11  |-  k  e. 
_V
4342fconst 6091 . . . . . . . . . 10  |-  ( ( 1 ... N )  X.  { k } ) : ( 1 ... N ) --> { k }
4443a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1 ... N )  X.  { k } ) : ( 1 ... N ) --> { k } )
45 fzfid 12772 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1 ... N )  e. 
Fin )
46 inidm 3822 . . . . . . . . 9  |-  ( ( 1 ... N )  i^i  ( 1 ... N ) )  =  ( 1 ... N
)
4733, 41, 44, 45, 45, 46off 6912 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) : ( 1 ... N
) --> ( 0 [,] 1 ) )
48 poimir.i . . . . . . . . . 10  |-  I  =  ( ( 0 [,] 1 )  ^m  (
1 ... N ) )
4948eleq2i 2693 . . . . . . . . 9  |-  ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  e.  I  <->  ( ( 1st `  ( G `  k ) )  oF  /  ( ( 1 ... N )  X.  { k } ) )  e.  ( ( 0 [,] 1
)  ^m  ( 1 ... N ) ) )
50 ovex 6678 . . . . . . . . . 10  |-  ( 0 [,] 1 )  e. 
_V
51 ovex 6678 . . . . . . . . . 10  |-  ( 1 ... N )  e. 
_V
5250, 51elmap 7886 . . . . . . . . 9  |-  ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  <->  ( ( 1st `  ( G `  k ) )  oF  /  ( ( 1 ... N )  X.  { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1
) )
5349, 52bitri 264 . . . . . . . 8  |-  ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  e.  I  <->  ( ( 1st `  ( G `  k ) )  oF  /  ( ( 1 ... N )  X.  { k } ) ) : ( 1 ... N ) --> ( 0 [,] 1
) )
5447, 53sylibr 224 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) )  e.  I )
55 eqid 2622 . . . . . . 7  |-  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )  =  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )
5654, 55fmptd 6385 . . . . . 6  |-  ( ph  ->  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) : NN --> I )
57 frn 6053 . . . . . 6  |-  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) : NN --> I  ->  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  C_  I )
5856, 57syl 17 . . . . 5  |-  ( ph  ->  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  C_  I
)
59 ominf 8172 . . . . . . 7  |-  -.  om  e.  Fin
60 nnenom 12779 . . . . . . . . 9  |-  NN  ~~  om
61 enfi 8176 . . . . . . . . 9  |-  ( NN 
~~  om  ->  ( NN  e.  Fin  <->  om  e.  Fin ) )
6260, 61ax-mp 5 . . . . . . . 8  |-  ( NN  e.  Fin  <->  om  e.  Fin )
63 iunid 4575 . . . . . . . . . . 11  |-  U_ c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) { c }  =  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )
6463imaeq2i 5464 . . . . . . . . . 10  |-  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " U_ c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) { c } )  =  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )
65 imaiun 6503 . . . . . . . . . 10  |-  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " U_ c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) { c } )  =  U_ c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" { c } )
66 ovex 6678 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) )  e. 
_V
6766, 55fnmpti 6022 . . . . . . . . . . . 12  |-  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )  Fn  NN
68 dffn3 6054 . . . . . . . . . . . 12  |-  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  Fn  NN  <->  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) : NN --> ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )
6967, 68mpbi 220 . . . . . . . . . . 11  |-  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) : NN --> ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )
70 fimacnv 6347 . . . . . . . . . . 11  |-  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) : NN --> ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  ->  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  =  NN )
7169, 70ax-mp 5 . . . . . . . . . 10  |-  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  =  NN
7264, 65, 713eqtr3ri 2653 . . . . . . . . 9  |-  NN  =  U_ c  e.  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )
7372eleq1i 2692 . . . . . . . 8  |-  ( NN  e.  Fin  <->  U_ c  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  e.  Fin )
7462, 73bitr3i 266 . . . . . . 7  |-  ( om  e.  Fin  <->  U_ c  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  e.  Fin )
7559, 74mtbi 312 . . . . . 6  |-  -.  U_ c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" { c } )  e.  Fin
76 ralnex 2992 . . . . . . . . . . . 12  |-  ( A. k  e.  ( ZZ>= `  i )  -.  (
( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  <->  -.  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c )
7776rexbii 3041 . . . . . . . . . . 11  |-  ( E. i  e.  NN  A. k  e.  ( ZZ>= `  i )  -.  (
( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  <->  E. i  e.  NN  -.  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c )
78 rexnal 2995 . . . . . . . . . . 11  |-  ( E. i  e.  NN  -.  E. k  e.  ( ZZ>= `  i ) ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) )  =  c  <->  -.  A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c )
7977, 78bitri 264 . . . . . . . . . 10  |-  ( E. i  e.  NN  A. k  e.  ( ZZ>= `  i )  -.  (
( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  <->  -.  A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c )
8079ralbii 2980 . . . . . . . . 9  |-  ( A. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) E. i  e.  NN  A. k  e.  ( ZZ>= `  i )  -.  (
( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  <->  A. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  -.  A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c )
81 ralnex 2992 . . . . . . . . 9  |-  ( A. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )  -.  A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  <->  -.  E. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c )
8280, 81bitri 264 . . . . . . . 8  |-  ( A. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) E. i  e.  NN  A. k  e.  ( ZZ>= `  i )  -.  (
( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  <->  -.  E. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c )
83 nnuz 11723 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
84 elnnuz 11724 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  NN  <->  i  e.  ( ZZ>= `  1 )
)
85 fzouzsplit 12503 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( ZZ>= `  1
)  ->  ( ZZ>= ` 
1 )  =  ( ( 1..^ i )  u.  ( ZZ>= `  i
) ) )
8684, 85sylbi 207 . . . . . . . . . . . . . . . 16  |-  ( i  e.  NN  ->  ( ZZ>=
`  1 )  =  ( ( 1..^ i )  u.  ( ZZ>= `  i ) ) )
8783, 86syl5eq 2668 . . . . . . . . . . . . . . 15  |-  ( i  e.  NN  ->  NN  =  ( ( 1..^ i )  u.  ( ZZ>=
`  i ) ) )
8887difeq1d 3727 . . . . . . . . . . . . . 14  |-  ( i  e.  NN  ->  ( NN  \  ( 1..^ i ) )  =  ( ( ( 1..^ i )  u.  ( ZZ>= `  i ) )  \ 
( 1..^ i ) ) )
89 uncom 3757 . . . . . . . . . . . . . . . 16  |-  ( ( 1..^ i )  u.  ( ZZ>= `  i )
)  =  ( (
ZZ>= `  i )  u.  ( 1..^ i ) )
9089difeq1i 3724 . . . . . . . . . . . . . . 15  |-  ( ( ( 1..^ i )  u.  ( ZZ>= `  i
) )  \  (
1..^ i ) )  =  ( ( (
ZZ>= `  i )  u.  ( 1..^ i ) )  \  ( 1..^ i ) )
91 difun2 4048 . . . . . . . . . . . . . . 15  |-  ( ( ( ZZ>= `  i )  u.  ( 1..^ i ) )  \  ( 1..^ i ) )  =  ( ( ZZ>= `  i
)  \  ( 1..^ i ) )
9290, 91eqtri 2644 . . . . . . . . . . . . . 14  |-  ( ( ( 1..^ i )  u.  ( ZZ>= `  i
) )  \  (
1..^ i ) )  =  ( ( ZZ>= `  i )  \  (
1..^ i ) )
9388, 92syl6eq 2672 . . . . . . . . . . . . 13  |-  ( i  e.  NN  ->  ( NN  \  ( 1..^ i ) )  =  ( ( ZZ>= `  i )  \  ( 1..^ i ) ) )
94 difss 3737 . . . . . . . . . . . . 13  |-  ( (
ZZ>= `  i )  \ 
( 1..^ i ) )  C_  ( ZZ>= `  i )
9593, 94syl6eqss 3655 . . . . . . . . . . . 12  |-  ( i  e.  NN  ->  ( NN  \  ( 1..^ i ) )  C_  ( ZZ>=
`  i ) )
96 ssralv 3666 . . . . . . . . . . . 12  |-  ( ( NN  \  ( 1..^ i ) )  C_  ( ZZ>= `  i )  ->  ( A. k  e.  ( ZZ>= `  i )  -.  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  A. k  e.  ( NN  \  (
1..^ i ) )  -.  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) )  =  c ) )
9795, 96syl 17 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  ( A. k  e.  ( ZZ>=
`  i )  -.  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  A. k  e.  ( NN  \  (
1..^ i ) )  -.  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) )  =  c ) )
98 impexp 462 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  NN  /\ 
-.  k  e.  ( 1..^ i ) )  ->  -.  ( ( 1st `  ( G `  k ) )  oF  /  ( ( 1 ... N )  X.  { k } ) )  =  c )  <->  ( k  e.  NN  ->  ( -.  k  e.  ( 1..^ i )  ->  -.  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c ) ) )
99 eldif 3584 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( NN  \ 
( 1..^ i ) )  <->  ( k  e.  NN  /\  -.  k  e.  ( 1..^ i ) ) )
10099imbi1i 339 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  ( NN 
\  ( 1..^ i ) )  ->  -.  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c )  <->  ( (
k  e.  NN  /\  -.  k  e.  (
1..^ i ) )  ->  -.  ( ( 1st `  ( G `  k ) )  oF  /  ( ( 1 ... N )  X.  { k } ) )  =  c ) )
101 con34b 306 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  k  e.  ( 1..^ i ) )  <->  ( -.  k  e.  ( 1..^ i )  ->  -.  ( ( 1st `  ( G `  k ) )  oF  /  ( ( 1 ... N )  X.  { k } ) )  =  c ) )
102101imbi2i 326 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  ->  ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  k  e.  ( 1..^ i ) ) )  <->  ( k  e.  NN  ->  ( -.  k  e.  ( 1..^ i )  ->  -.  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c ) ) )
10398, 100, 1023bitr4i 292 . . . . . . . . . . . . . 14  |-  ( ( k  e.  ( NN 
\  ( 1..^ i ) )  ->  -.  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c )  <->  ( k  e.  NN  ->  ( (
( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  k  e.  ( 1..^ i ) ) ) )
104103albii 1747 . . . . . . . . . . . . 13  |-  ( A. k ( k  e.  ( NN  \  (
1..^ i ) )  ->  -.  ( ( 1st `  ( G `  k ) )  oF  /  ( ( 1 ... N )  X.  { k } ) )  =  c )  <->  A. k ( k  e.  NN  ->  (
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  k  e.  ( 1..^ i ) ) ) )
105 df-ral 2917 . . . . . . . . . . . . 13  |-  ( A. k  e.  ( NN  \  ( 1..^ i ) )  -.  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) )  =  c  <->  A. k ( k  e.  ( NN  \ 
( 1..^ i ) )  ->  -.  (
( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c ) )
106 vex 3203 . . . . . . . . . . . . . . . 16  |-  c  e. 
_V
10755mptiniseg 5629 . . . . . . . . . . . . . . . 16  |-  ( c  e.  _V  ->  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " {
c } )  =  { k  e.  NN  |  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) )  =  c } )
108106, 107ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  =  {
k  e.  NN  | 
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c }
109108sseq1i 3629 . . . . . . . . . . . . . 14  |-  ( ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " {
c } )  C_  ( 1..^ i )  <->  { k  e.  NN  |  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) )  =  c }  C_  (
1..^ i ) )
110 rabss 3679 . . . . . . . . . . . . . 14  |-  ( { k  e.  NN  | 
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c }  C_  ( 1..^ i )  <->  A. k  e.  NN  ( ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) )  =  c  ->  k  e.  ( 1..^ i ) ) )
111 df-ral 2917 . . . . . . . . . . . . . 14  |-  ( A. k  e.  NN  (
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  k  e.  ( 1..^ i ) )  <->  A. k ( k  e.  NN  ->  (
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  k  e.  ( 1..^ i ) ) ) )
112109, 110, 1113bitri 286 . . . . . . . . . . . . 13  |-  ( ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " {
c } )  C_  ( 1..^ i )  <->  A. k
( k  e.  NN  ->  ( ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) )  =  c  -> 
k  e.  ( 1..^ i ) ) ) )
113104, 105, 1123bitr4i 292 . . . . . . . . . . . 12  |-  ( A. k  e.  ( NN  \  ( 1..^ i ) )  -.  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) )  =  c  <->  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  C_  (
1..^ i ) )
114 fzofi 12773 . . . . . . . . . . . . 13  |-  ( 1..^ i )  e.  Fin
115 ssfi 8180 . . . . . . . . . . . . 13  |-  ( ( ( 1..^ i )  e.  Fin  /\  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " {
c } )  C_  ( 1..^ i ) )  ->  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  e.  Fin )
116114, 115mpan 706 . . . . . . . . . . . 12  |-  ( ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " {
c } )  C_  ( 1..^ i )  -> 
( `' ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" { c } )  e.  Fin )
117113, 116sylbi 207 . . . . . . . . . . 11  |-  ( A. k  e.  ( NN  \  ( 1..^ i ) )  -.  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) )  =  c  ->  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  e.  Fin )
11897, 117syl6 35 . . . . . . . . . 10  |-  ( i  e.  NN  ->  ( A. k  e.  ( ZZ>=
`  i )  -.  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " {
c } )  e. 
Fin ) )
119118rexlimiv 3027 . . . . . . . . 9  |-  ( E. i  e.  NN  A. k  e.  ( ZZ>= `  i )  -.  (
( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " {
c } )  e. 
Fin )
120119ralimi 2952 . . . . . . . 8  |-  ( A. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) E. i  e.  NN  A. k  e.  ( ZZ>= `  i )  -.  (
( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  A. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  e.  Fin )
12182, 120sylbir 225 . . . . . . 7  |-  ( -. 
E. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  A. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  e.  Fin )
122 iunfi 8254 . . . . . . . 8  |-  ( ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  e.  Fin  /\ 
A. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  e.  Fin )  ->  U_ c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  e.  Fin )
123122ex 450 . . . . . . 7  |-  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  e.  Fin  ->  ( A. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  e.  Fin  ->  U_ c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  e.  Fin ) )
124121, 123syl5 34 . . . . . 6  |-  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  e.  Fin  ->  ( -.  E. c  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  U_ c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) ( `' ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " { c } )  e.  Fin ) )
12575, 124mt3i 141 . . . . 5  |-  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  e.  Fin  ->  E. c  e.  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c )
126 ssrexv 3667 . . . . 5  |-  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  C_  I  ->  ( E. c  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  E. c  e.  I  A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c ) )
12758, 125, 126syl2im 40 . . . 4  |-  ( ph  ->  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )  e.  Fin  ->  E. c  e.  I  A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c ) )
128 unitssre 12319 . . . . . . . . . . . 12  |-  ( 0 [,] 1 )  C_  RR
129 elmapi 7879 . . . . . . . . . . . . . 14  |-  ( c  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  ->  c : ( 1 ... N ) --> ( 0 [,] 1 ) )
130129, 48eleq2s 2719 . . . . . . . . . . . . 13  |-  ( c  e.  I  ->  c : ( 1 ... N ) --> ( 0 [,] 1 ) )
131130ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( ( c  e.  I  /\  m  e.  ( 1 ... N ) )  ->  ( c `  m )  e.  ( 0 [,] 1 ) )
132128, 131sseldi 3601 . . . . . . . . . . 11  |-  ( ( c  e.  I  /\  m  e.  ( 1 ... N ) )  ->  ( c `  m )  e.  RR )
133 nnrp 11842 . . . . . . . . . . . 12  |-  ( i  e.  NN  ->  i  e.  RR+ )
134133rpreccld 11882 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  (
1  /  i )  e.  RR+ )
135 eqid 2622 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
136135rexmet 22594 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
137 blcntr 22218 . . . . . . . . . . . 12  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  (
c `  m )  e.  RR  /\  ( 1  /  i )  e.  RR+ )  ->  ( c `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) )
138136, 137mp3an1 1411 . . . . . . . . . . 11  |-  ( ( ( c `  m
)  e.  RR  /\  ( 1  /  i
)  e.  RR+ )  ->  ( c `  m
)  e.  ( ( c `  m ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )
139132, 134, 138syl2an 494 . . . . . . . . . 10  |-  ( ( ( c  e.  I  /\  m  e.  (
1 ... N ) )  /\  i  e.  NN )  ->  ( c `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )
140139an32s 846 . . . . . . . . 9  |-  ( ( ( c  e.  I  /\  i  e.  NN )  /\  m  e.  ( 1 ... N ) )  ->  ( c `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )
141 fveq1 6190 . . . . . . . . . 10  |-  ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  (
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  =  ( c `  m
) )
142141eleq1d 2686 . . . . . . . . 9  |-  ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  (
( ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  <->  ( c `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) ) )
143140, 142syl5ibrcom 237 . . . . . . . 8  |-  ( ( ( c  e.  I  /\  i  e.  NN )  /\  m  e.  ( 1 ... N ) )  ->  ( (
( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  (
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
144143ralrimdva 2969 . . . . . . 7  |-  ( ( c  e.  I  /\  i  e.  NN )  ->  ( ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) )  =  c  ->  A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
145144reximdv 3016 . . . . . 6  |-  ( ( c  e.  I  /\  i  e.  NN )  ->  ( E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
146145ralimdva 2962 . . . . 5  |-  ( c  e.  I  ->  ( A. i  e.  NN  E. k  e.  ( ZZ>= `  i ) ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) )  =  c  ->  A. i  e.  NN  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
147146reximia 3009 . . . 4  |-  ( E. c  e.  I  A. i  e.  NN  E. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  =  c  ->  E. c  e.  I  A. i  e.  NN  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) )
148127, 147syl6 35 . . 3  |-  ( ph  ->  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )  e.  Fin  ->  E. c  e.  I  A. i  e.  NN  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
149 poimir.r . . . . . . . 8  |-  R  =  ( Xt_ `  (
( 1 ... N
)  X.  { (
topGen `  ran  (,) ) } ) )
15051, 50ixpconst 7918 . . . . . . . . 9  |-  X_ n  e.  ( 1 ... N
) ( 0 [,] 1 )  =  ( ( 0 [,] 1
)  ^m  ( 1 ... N ) )
15148, 150eqtr4i 2647 . . . . . . . 8  |-  I  = 
X_ n  e.  ( 1 ... N ) ( 0 [,] 1
)
152149, 151oveq12i 6662 . . . . . . 7  |-  ( Rt  I )  =  ( (
Xt_ `  ( (
1 ... N )  X. 
{ ( topGen `  ran  (,) ) } ) )t  X_ n  e.  ( 1 ... N ) ( 0 [,] 1 ) )
153 fzfid 12772 . . . . . . . . 9  |-  ( T. 
->  ( 1 ... N
)  e.  Fin )
154 retop 22565 . . . . . . . . . . 11  |-  ( topGen ` 
ran  (,) )  e.  Top
155154fconst6 6095 . . . . . . . . . 10  |-  ( ( 1 ... N )  X.  { ( topGen ` 
ran  (,) ) } ) : ( 1 ... N ) --> Top
156155a1i 11 . . . . . . . . 9  |-  ( T. 
->  ( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) : ( 1 ... N ) --> Top )
15750a1i 11 . . . . . . . . 9  |-  ( ( T.  /\  n  e.  ( 1 ... N
) )  ->  (
0 [,] 1 )  e.  _V )
158153, 156, 157ptrest 33408 . . . . . . . 8  |-  ( T. 
->  ( ( Xt_ `  (
( 1 ... N
)  X.  { (
topGen `  ran  (,) ) } ) )t  X_ n  e.  ( 1 ... N
) ( 0 [,] 1 ) )  =  ( Xt_ `  (
n  e.  ( 1 ... N )  |->  ( ( ( ( 1 ... N )  X. 
{ ( topGen `  ran  (,) ) } ) `  n )t  ( 0 [,] 1 ) ) ) ) )
159158trud 1493 . . . . . . 7  |-  ( (
Xt_ `  ( (
1 ... N )  X. 
{ ( topGen `  ran  (,) ) } ) )t  X_ n  e.  ( 1 ... N ) ( 0 [,] 1 ) )  =  ( Xt_ `  ( n  e.  ( 1 ... N ) 
|->  ( ( ( ( 1 ... N )  X.  { ( topGen ` 
ran  (,) ) } ) `
 n )t  ( 0 [,] 1 ) ) ) )
160 fvex 6201 . . . . . . . . . . . 12  |-  ( topGen ` 
ran  (,) )  e.  _V
161160fvconst2 6469 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... N )  ->  (
( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) `  n
)  =  ( topGen ` 
ran  (,) ) )
162161oveq1d 6665 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... N )  ->  (
( ( ( 1 ... N )  X. 
{ ( topGen `  ran  (,) ) } ) `  n )t  ( 0 [,] 1 ) )  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) ) )
163162mpteq2ia 4740 . . . . . . . . 9  |-  ( n  e.  ( 1 ... N )  |->  ( ( ( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) `  n
)t  ( 0 [,] 1
) ) )  =  ( n  e.  ( 1 ... N ) 
|->  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) ) )
164 fconstmpt 5163 . . . . . . . . 9  |-  ( ( 1 ... N )  X.  { ( (
topGen `  ran  (,) )t  (
0 [,] 1 ) ) } )  =  ( n  e.  ( 1 ... N ) 
|->  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) ) )
165163, 164eqtr4i 2647 . . . . . . . 8  |-  ( n  e.  ( 1 ... N )  |->  ( ( ( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) `  n
)t  ( 0 [,] 1
) ) )  =  ( ( 1 ... N )  X.  {
( ( topGen `  ran  (,) )t  ( 0 [,] 1
) ) } )
166165fveq2i 6194 . . . . . . 7  |-  ( Xt_ `  ( n  e.  ( 1 ... N ) 
|->  ( ( ( ( 1 ... N )  X.  { ( topGen ` 
ran  (,) ) } ) `
 n )t  ( 0 [,] 1 ) ) ) )  =  (
Xt_ `  ( (
1 ... N )  X. 
{ ( ( topGen ` 
ran  (,) )t  ( 0 [,] 1 ) ) } ) )
167152, 159, 1663eqtri 2648 . . . . . 6  |-  ( Rt  I )  =  ( Xt_ `  ( ( 1 ... N )  X.  {
( ( topGen `  ran  (,) )t  ( 0 [,] 1
) ) } ) )
168 fzfi 12771 . . . . . . 7  |-  ( 1 ... N )  e. 
Fin
169 dfii2 22685 . . . . . . . . 9  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
170 iicmp 22689 . . . . . . . . 9  |-  II  e.  Comp
171169, 170eqeltrri 2698 . . . . . . . 8  |-  ( (
topGen `  ran  (,) )t  (
0 [,] 1 ) )  e.  Comp
172171fconst6 6095 . . . . . . 7  |-  ( ( 1 ... N )  X.  { ( (
topGen `  ran  (,) )t  (
0 [,] 1 ) ) } ) : ( 1 ... N
) --> Comp
173 ptcmpfi 21616 . . . . . . 7  |-  ( ( ( 1 ... N
)  e.  Fin  /\  ( ( 1 ... N )  X.  {
( ( topGen `  ran  (,) )t  ( 0 [,] 1
) ) } ) : ( 1 ... N ) --> Comp )  ->  ( Xt_ `  (
( 1 ... N
)  X.  { ( ( topGen `  ran  (,) )t  (
0 [,] 1 ) ) } ) )  e.  Comp )
174168, 172, 173mp2an 708 . . . . . 6  |-  ( Xt_ `  ( ( 1 ... N )  X.  {
( ( topGen `  ran  (,) )t  ( 0 [,] 1
) ) } ) )  e.  Comp
175167, 174eqeltri 2697 . . . . 5  |-  ( Rt  I )  e.  Comp
176 rehaus 22602 . . . . . . . . . . . 12  |-  ( topGen ` 
ran  (,) )  e.  Haus
177176fconst6 6095 . . . . . . . . . . 11  |-  ( ( 1 ... N )  X.  { ( topGen ` 
ran  (,) ) } ) : ( 1 ... N ) --> Haus
178 pthaus 21441 . . . . . . . . . . 11  |-  ( ( ( 1 ... N
)  e.  Fin  /\  ( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) : ( 1 ... N ) -->
Haus )  ->  ( Xt_ `  ( ( 1 ... N )  X. 
{ ( topGen `  ran  (,) ) } ) )  e.  Haus )
179168, 177, 178mp2an 708 . . . . . . . . . 10  |-  ( Xt_ `  ( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) )  e. 
Haus
180149, 179eqeltri 2697 . . . . . . . . 9  |-  R  e. 
Haus
181 haustop 21135 . . . . . . . . 9  |-  ( R  e.  Haus  ->  R  e. 
Top )
182180, 181ax-mp 5 . . . . . . . 8  |-  R  e. 
Top
183 reex 10027 . . . . . . . . . 10  |-  RR  e.  _V
184 mapss 7900 . . . . . . . . . 10  |-  ( ( RR  e.  _V  /\  ( 0 [,] 1
)  C_  RR )  ->  ( ( 0 [,] 1 )  ^m  (
1 ... N ) ) 
C_  ( RR  ^m  ( 1 ... N
) ) )
185183, 128, 184mp2an 708 . . . . . . . . 9  |-  ( ( 0 [,] 1 )  ^m  ( 1 ... N ) )  C_  ( RR  ^m  (
1 ... N ) )
18648, 185eqsstri 3635 . . . . . . . 8  |-  I  C_  ( RR  ^m  (
1 ... N ) )
187 uniretop 22566 . . . . . . . . . . 11  |-  RR  =  U. ( topGen `  ran  (,) )
188149, 187ptuniconst 21401 . . . . . . . . . 10  |-  ( ( ( 1 ... N
)  e.  Fin  /\  ( topGen `  ran  (,) )  e.  Top )  ->  ( RR  ^m  ( 1 ... N ) )  = 
U. R )
189168, 154, 188mp2an 708 . . . . . . . . 9  |-  ( RR 
^m  ( 1 ... N ) )  = 
U. R
190189restuni 20966 . . . . . . . 8  |-  ( ( R  e.  Top  /\  I  C_  ( RR  ^m  ( 1 ... N
) ) )  ->  I  =  U. ( Rt  I ) )
191182, 186, 190mp2an 708 . . . . . . 7  |-  I  = 
U. ( Rt  I )
192191bwth 21213 . . . . . 6  |-  ( ( ( Rt  I )  e.  Comp  /\ 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  C_  I  /\  -.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )  e.  Fin )  ->  E. c  e.  I 
c  e.  ( (
limPt `  ( Rt  I ) ) `  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) ) )
1931923expia 1267 . . . . 5  |-  ( ( ( Rt  I )  e.  Comp  /\ 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  C_  I
)  ->  ( -.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  e.  Fin  ->  E. c  e.  I  c  e.  ( ( limPt `  ( Rt  I ) ) `  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) ) ) )
194175, 58, 193sylancr 695 . . . 4  |-  ( ph  ->  ( -.  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  e.  Fin  ->  E. c  e.  I  c  e.  ( ( limPt `  ( Rt  I ) ) `  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) ) ) )
195 cmptop 21198 . . . . . . . . 9  |-  ( ( Rt  I )  e.  Comp  -> 
( Rt  I )  e.  Top )
196175, 195ax-mp 5 . . . . . . . 8  |-  ( Rt  I )  e.  Top
197191islp3 20950 . . . . . . . 8  |-  ( ( ( Rt  I )  e.  Top  /\ 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  C_  I  /\  c  e.  I
)  ->  ( c  e.  ( ( limPt `  ( Rt  I ) ) `  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  <->  A. v  e.  ( Rt  I ) ( c  e.  v  ->  (
v  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) ) ) )
198196, 197mp3an1 1411 . . . . . . 7  |-  ( ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  C_  I  /\  c  e.  I
)  ->  ( c  e.  ( ( limPt `  ( Rt  I ) ) `  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  <->  A. v  e.  ( Rt  I ) ( c  e.  v  ->  (
v  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) ) ) )
19958, 198sylan 488 . . . . . 6  |-  ( (
ph  /\  c  e.  I )  ->  (
c  e.  ( (
limPt `  ( Rt  I ) ) `  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  <->  A. v  e.  ( Rt  I ) ( c  e.  v  ->  (
v  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) ) ) )
200 fzfid 12772 . . . . . . . . . . . . 13  |-  ( ( c  e.  I  /\  i  e.  NN )  ->  ( 1 ... N
)  e.  Fin )
201155a1i 11 . . . . . . . . . . . . 13  |-  ( ( c  e.  I  /\  i  e.  NN )  ->  ( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) : ( 1 ... N ) --> Top )
202 nnrecre 11057 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  NN  ->  (
1  /  i )  e.  RR )
203202rexrd 10089 . . . . . . . . . . . . . . . 16  |-  ( i  e.  NN  ->  (
1  /  i )  e.  RR* )
204 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
205135, 204tgioo 22599 . . . . . . . . . . . . . . . . . 18  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
206205blopn 22305 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  (
c `  m )  e.  RR  /\  ( 1  /  i )  e. 
RR* )  ->  (
( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  e.  ( topGen ` 
ran  (,) ) )
207136, 206mp3an1 1411 . . . . . . . . . . . . . . . 16  |-  ( ( ( c `  m
)  e.  RR  /\  ( 1  /  i
)  e.  RR* )  ->  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  e.  ( topGen `  ran  (,) )
)
208132, 203, 207syl2an 494 . . . . . . . . . . . . . . 15  |-  ( ( ( c  e.  I  /\  m  e.  (
1 ... N ) )  /\  i  e.  NN )  ->  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  e.  ( topGen ` 
ran  (,) ) )
209208an32s 846 . . . . . . . . . . . . . 14  |-  ( ( ( c  e.  I  /\  i  e.  NN )  /\  m  e.  ( 1 ... N ) )  ->  ( (
c `  m )
( ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  e.  ( topGen ` 
ran  (,) ) )
210160fvconst2 6469 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... N )  ->  (
( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) `  m
)  =  ( topGen ` 
ran  (,) ) )
211210adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( c  e.  I  /\  i  e.  NN )  /\  m  e.  ( 1 ... N ) )  ->  ( (
( 1 ... N
)  X.  { (
topGen `  ran  (,) ) } ) `  m
)  =  ( topGen ` 
ran  (,) ) )
212209, 211eleqtrrd 2704 . . . . . . . . . . . . 13  |-  ( ( ( c  e.  I  /\  i  e.  NN )  /\  m  e.  ( 1 ... N ) )  ->  ( (
c `  m )
( ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  e.  ( ( ( 1 ... N
)  X.  { (
topGen `  ran  (,) ) } ) `  m
) )
213 noel 3919 . . . . . . . . . . . . . . . 16  |-  -.  m  e.  (/)
214 difid 3948 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... N ) 
\  ( 1 ... N ) )  =  (/)
215214eleq2i 2693 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( ( 1 ... N )  \ 
( 1 ... N
) )  <->  m  e.  (/) )
216213, 215mtbir 313 . . . . . . . . . . . . . . 15  |-  -.  m  e.  ( ( 1 ... N )  \  (
1 ... N ) )
217216pm2.21i 116 . . . . . . . . . . . . . 14  |-  ( m  e.  ( ( 1 ... N )  \ 
( 1 ... N
) )  ->  (
( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  =  U. (
( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) `  m
) )
218217adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( c  e.  I  /\  i  e.  NN )  /\  m  e.  ( ( 1 ... N
)  \  ( 1 ... N ) ) )  ->  ( (
c `  m )
( ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  =  U. (
( ( 1 ... N )  X.  {
( topGen `  ran  (,) ) } ) `  m
) )
219200, 201, 200, 212, 218ptopn 21386 . . . . . . . . . . . 12  |-  ( ( c  e.  I  /\  i  e.  NN )  -> 
X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  e.  ( Xt_ `  (
( 1 ... N
)  X.  { (
topGen `  ran  (,) ) } ) ) )
220219, 149syl6eleqr 2712 . . . . . . . . . . 11  |-  ( ( c  e.  I  /\  i  e.  NN )  -> 
X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  e.  R )
221 ovex 6678 . . . . . . . . . . . . 13  |-  ( ( 0 [,] 1 )  ^m  ( 1 ... N ) )  e. 
_V
22248, 221eqeltri 2697 . . . . . . . . . . . 12  |-  I  e. 
_V
223 elrestr 16089 . . . . . . . . . . . 12  |-  ( ( R  e.  Haus  /\  I  e.  _V  /\  X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  e.  R )  ->  ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I )  e.  ( Rt  I ) )
224180, 222, 223mp3an12 1414 . . . . . . . . . . 11  |-  ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  e.  R  -> 
( X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  i^i  I )  e.  ( Rt  I ) )
225220, 224syl 17 . . . . . . . . . 10  |-  ( ( c  e.  I  /\  i  e.  NN )  ->  ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I )  e.  ( Rt  I ) )
226 difss 3737 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) 
C_  ( ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" ( 1..^ i ) )
227 imassrn 5477 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  C_  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )
228226, 227sstri 3612 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) 
C_  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )
229228, 58syl5ss 3614 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" ( 1..^ i ) )  \  {
c } )  C_  I )
230 haust1 21156 . . . . . . . . . . . . . 14  |-  ( R  e.  Haus  ->  R  e. 
Fre )
231180, 230ax-mp 5 . . . . . . . . . . . . 13  |-  R  e. 
Fre
232 restt1 21171 . . . . . . . . . . . . 13  |-  ( ( R  e.  Fre  /\  I  e.  _V )  ->  ( Rt  I )  e.  Fre )
233231, 222, 232mp2an 708 . . . . . . . . . . . 12  |-  ( Rt  I )  e.  Fre
234 funmpt 5926 . . . . . . . . . . . . . 14  |-  Fun  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )
235 imafi 8259 . . . . . . . . . . . . . 14  |-  ( ( Fun  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  /\  (
1..^ i )  e. 
Fin )  ->  (
( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  e. 
Fin )
236234, 114, 235mp2an 708 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  e. 
Fin
237 diffi 8192 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  e. 
Fin  ->  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } )  e.  Fin )
238236, 237ax-mp 5 . . . . . . . . . . . 12  |-  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } )  e.  Fin
239191t1ficld 21131 . . . . . . . . . . . 12  |-  ( ( ( Rt  I )  e.  Fre  /\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" ( 1..^ i ) )  \  {
c } )  C_  I  /\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } )  e.  Fin )  -> 
( ( ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" ( 1..^ i ) )  \  {
c } )  e.  ( Clsd `  ( Rt  I ) ) )
240233, 238, 239mp3an13 1415 . . . . . . . . . . 11  |-  ( ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } )  C_  I  ->  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } )  e.  ( Clsd `  ( Rt  I ) ) )
241229, 240syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" ( 1..^ i ) )  \  {
c } )  e.  ( Clsd `  ( Rt  I ) ) )
242191difopn 20838 . . . . . . . . . 10  |-  ( ( ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I )  e.  ( Rt  I )  /\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } )  e.  ( Clsd `  ( Rt  I ) ) )  ->  ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  e.  ( Rt  I ) )
243225, 241, 242syl2anr 495 . . . . . . . . 9  |-  ( (
ph  /\  ( c  e.  I  /\  i  e.  NN ) )  -> 
( ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  e.  ( Rt  I ) )
244243anassrs 680 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  I )  /\  i  e.  NN )  ->  (
( X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  i^i  I )  \  (
( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } ) )  e.  ( Rt  I ) )
245 eleq2 2690 . . . . . . . . . . 11  |-  ( v  =  ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  ->  ( c  e.  v  <->  c  e.  ( ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) ) ) )
246 ineq1 3807 . . . . . . . . . . . 12  |-  ( v  =  ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  ->  ( v  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) 
\  { c } ) )  =  ( ( ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) ) )
247246neeq1d 2853 . . . . . . . . . . 11  |-  ( v  =  ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  ->  ( (
v  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) 
<->  ( ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) ) )
248245, 247imbi12d 334 . . . . . . . . . 10  |-  ( v  =  ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  ->  ( (
c  e.  v  -> 
( v  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) )  <->  ( c  e.  ( ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  ->  ( (
( X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  i^i  I )  \  (
( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) ) ) )
249248rspcva 3307 . . . . . . . . 9  |-  ( ( ( ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  e.  ( Rt  I )  /\  A. v  e.  ( Rt  I ) ( c  e.  v  ->  (
v  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) ) )  ->  (
c  e.  ( (
X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  i^i  I )  \  (
( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } ) )  ->  (
( ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) ) )
250 ffn 6045 . . . . . . . . . . . . . . . 16  |-  ( c : ( 1 ... N ) --> ( 0 [,] 1 )  -> 
c  Fn  ( 1 ... N ) )
251130, 250syl 17 . . . . . . . . . . . . . . 15  |-  ( c  e.  I  ->  c  Fn  ( 1 ... N
) )
252251adantr 481 . . . . . . . . . . . . . 14  |-  ( ( c  e.  I  /\  i  e.  NN )  ->  c  Fn  ( 1 ... N ) )
253140ralrimiva 2966 . . . . . . . . . . . . . 14  |-  ( ( c  e.  I  /\  i  e.  NN )  ->  A. m  e.  ( 1 ... N ) ( c `  m
)  e.  ( ( c `  m ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )
254106elixp 7915 . . . . . . . . . . . . . 14  |-  ( c  e.  X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  <->  ( c  Fn  ( 1 ... N
)  /\  A. m  e.  ( 1 ... N
) ( c `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) ) )
255252, 253, 254sylanbrc 698 . . . . . . . . . . . . 13  |-  ( ( c  e.  I  /\  i  e.  NN )  ->  c  e.  X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )
256 simpl 473 . . . . . . . . . . . . 13  |-  ( ( c  e.  I  /\  i  e.  NN )  ->  c  e.  I )
257255, 256elind 3798 . . . . . . . . . . . 12  |-  ( ( c  e.  I  /\  i  e.  NN )  ->  c  e.  ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) )
258 neldifsnd 4322 . . . . . . . . . . . 12  |-  ( ( c  e.  I  /\  i  e.  NN )  ->  -.  c  e.  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } ) )
259257, 258eldifd 3585 . . . . . . . . . . 11  |-  ( ( c  e.  I  /\  i  e.  NN )  ->  c  e.  ( (
X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  i^i  I )  \  (
( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } ) ) )
260259adantll 750 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  I )  /\  i  e.  NN )  ->  c  e.  ( ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) ) )
261 simplr 792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( j  Fn  (
1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  ->  A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )
262261anim1i 592 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( j  Fn  ( 1 ... N
)  /\  A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  ->  ( A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  /\  -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) ) )
263 simpl 473 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  /\  -.  j  e.  { c } )  ->  j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )
264262, 263anim12i 590 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  /\  ( j  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  /\  -.  j  e.  { c } ) )  -> 
( ( A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  /\  -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) )  /\  j  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) ) )
265 elin 3796 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( ( (
X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  i^i  I )  \  (
( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  <->  ( j  e.  ( ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  /\  j  e.  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) 
\  { c } ) ) )
266 andir 912 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  \/  ( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  -.  j  e.  { c } ) )  /\  ( j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  /\  -.  j  e.  { c } ) )  <->  ( ( ( ( ( j  Fn  ( 1 ... N
)  /\  A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  /\  ( j  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  /\  -.  j  e.  { c } ) )  \/  ( ( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  -.  j  e.  { c } )  /\  (
j  e.  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  /\  -.  j  e.  { c } ) ) ) )
267 eldif 3584 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  <->  ( j  e.  ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I )  /\  -.  j  e.  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" ( 1..^ i ) )  \  {
c } ) ) )
268 elin 3796 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I )  <-> 
( j  e.  X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  /\  j  e.  I ) )
269 vex 3203 . . . . . . . . . . . . . . . . . . . . . . 23  |-  j  e. 
_V
270269elixp 7915 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  e.  X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  <->  ( j  Fn  ( 1 ... N
)  /\  A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) ) )
271270anbi1i 731 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( j  e.  X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  /\  j  e.  I )  <->  ( (
j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I ) )
272268, 271bitri 264 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I )  <-> 
( ( j  Fn  ( 1 ... N
)  /\  A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I ) )
273 ianor 509 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  ( j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  /\  -.  j  e.  { c } )  <->  ( -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \/ 
-.  -.  j  e.  { c } ) )
274 eldif 3584 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } )  <-> 
( j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  /\  -.  j  e.  { c } ) )
275273, 274xchnxbir 323 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  j  e.  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } )  <-> 
( -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) )  \/  -.  -.  j  e.  { c } ) )
276272, 275anbi12i 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I )  /\  -.  j  e.  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" ( 1..^ i ) )  \  {
c } ) )  <-> 
( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  ( -.  j  e.  (
( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \/ 
-.  -.  j  e.  { c } ) ) )
277 andi 911 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( j  Fn  ( 1 ... N
)  /\  A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  ( -.  j  e.  (
( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \/ 
-.  -.  j  e.  { c } ) )  <-> 
( ( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  \/  ( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  -.  j  e.  { c } ) ) )
278267, 276, 2773bitri 286 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  <->  ( ( ( ( j  Fn  (
1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  \/  ( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  -.  j  e.  { c } ) ) )
279 eldif 3584 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } )  <->  ( j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  /\  -.  j  e.  { c } ) )
280278, 279anbi12i 733 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  ( (
X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  i^i  I )  \  (
( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } ) )  /\  j  e.  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) 
\  { c } ) )  <->  ( (
( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  \/  ( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  -.  j  e.  { c } ) )  /\  ( j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  /\  -.  j  e.  { c } ) ) )
281 pm3.24 926 . . . . . . . . . . . . . . . . . . 19  |-  -.  ( -.  j  e.  { c }  /\  -.  -.  j  e.  { c } )
282 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( j  Fn  ( 1 ... N
)  /\  A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  -.  j  e.  { c } )  ->  -.  -.  j  e.  { c } )
283 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  e.  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  /\  -.  j  e.  { c } )  ->  -.  j  e.  { c } )
284282, 283anim12ci 591 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  -.  j  e.  { c } )  /\  (
j  e.  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  /\  -.  j  e.  { c } ) )  ->  ( -.  j  e.  { c }  /\  -.  -.  j  e.  { c } ) )
285281, 284mto 188 . . . . . . . . . . . . . . . . . 18  |-  -.  (
( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  -.  j  e.  { c } )  /\  (
j  e.  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  /\  -.  j  e.  { c } ) )
286285biorfi 422 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  /\  ( j  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  /\  -.  j  e.  { c } ) )  <->  ( (
( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  /\  ( j  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  /\  -.  j  e.  { c } ) )  \/  ( ( ( ( j  Fn  ( 1 ... N )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  -.  j  e.  { c } )  /\  (
j  e.  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  /\  -.  j  e.  { c } ) ) ) )
287266, 280, 2863bitr4i 292 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ( (
X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  i^i  I )  \  (
( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } ) )  /\  j  e.  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) 
\  { c } ) )  <->  ( (
( ( j  Fn  ( 1 ... N
)  /\  A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  /\  ( j  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  /\  -.  j  e.  { c } ) ) )
288265, 287bitri 264 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( ( (
X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  i^i  I )  \  (
( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  <->  ( (
( ( j  Fn  ( 1 ... N
)  /\  A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  /\  j  e.  I )  /\  -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  /\  ( j  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  /\  -.  j  e.  { c } ) ) )
289 ancom 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) )  /\  j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  <->  ( A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  /\  ( -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  /\  j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) ) ) )
290 anass 681 . . . . . . . . . . . . . . . 16  |-  ( ( ( A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  /\  -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) )  /\  j  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) )  <->  ( A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  /\  ( -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  /\  j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) ) ) )
291289, 290bitr4i 267 . . . . . . . . . . . . . . 15  |-  ( ( ( -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) )  /\  j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  <->  ( ( A. m  e.  (
1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  /\  -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) )  /\  j  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) ) )
292264, 288, 2913imtr4i 281 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ( (
X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  i^i  I )  \  (
( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  -> 
( ( -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) )  /\  j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) ) )
293 ancom 466 . . . . . . . . . . . . . . . . 17  |-  ( ( -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  /\  j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) )  <->  ( j  e. 
ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  /\  -.  j  e.  ( (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) ) )
294 eldif 3584 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  <-> 
( j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  /\  -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) ) )
295293, 294bitr4i 267 . . . . . . . . . . . . . . . 16  |-  ( ( -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  /\  j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) )  <->  j  e.  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  \  (
( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) ) )
296 imadmrn 5476 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " dom  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  =  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )
29766, 55dmmpti 6023 . . . . . . . . . . . . . . . . . . . . . 22  |-  dom  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  =  NN
298297imaeq2i 5464 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " dom  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  =  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " NN )
299296, 298eqtr3i 2646 . . . . . . . . . . . . . . . . . . . 20  |-  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  =  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " NN )
300299difeq1i 3724 . . . . . . . . . . . . . . . . . . 19  |-  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  =  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " NN ) 
\  ( ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" ( 1..^ i ) ) )
301 imadifss 33384 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " NN ) 
\  ( ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" ( 1..^ i ) ) )  C_  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " ( NN  \  ( 1..^ i ) ) )
302300, 301eqsstri 3635 . . . . . . . . . . . . . . . . . 18  |-  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) ) 
C_  ( ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
" ( NN  \ 
( 1..^ i ) ) )
303 imass2 5501 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( NN  \  ( 1..^ i ) )  C_  ( ZZ>= `  i )  ->  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " ( NN  \  ( 1..^ i ) ) )  C_  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " ( ZZ>=
`  i ) ) )
30495, 303syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN  ->  (
( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( NN 
\  ( 1..^ i ) ) )  C_  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " ( ZZ>=
`  i ) ) )
305 df-ima 5127 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( ZZ>= `  i ) )  =  ran  ( ( k  e.  NN  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )  |`  ( ZZ>= `  i )
)
306 uznnssnn 11735 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  e.  NN  ->  ( ZZ>=
`  i )  C_  NN )
307306resmptd 5452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  e.  NN  ->  (
( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  |`  ( ZZ>= `  i ) )  =  ( k  e.  (
ZZ>= `  i )  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )
308307rneqd 5353 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  e.  NN  ->  ran  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  |`  ( ZZ>=
`  i ) )  =  ran  ( k  e.  ( ZZ>= `  i
)  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) )
309305, 308syl5eq 2668 . . . . . . . . . . . . . . . . . . 19  |-  ( i  e.  NN  ->  (
( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( ZZ>= `  i ) )  =  ran  ( k  e.  ( ZZ>= `  i )  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )
310304, 309sseqtrd 3641 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  NN  ->  (
( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( NN 
\  ( 1..^ i ) ) )  C_  ran  ( k  e.  (
ZZ>= `  i )  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )
311302, 310syl5ss 3614 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  NN  ->  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) ) 
C_  ran  ( k  e.  ( ZZ>= `  i )  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )
312311sseld 3602 . . . . . . . . . . . . . . . 16  |-  ( i  e.  NN  ->  (
j  e.  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) ) )  ->  j  e.  ran  ( k  e.  (
ZZ>= `  i )  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) ) )
313295, 312syl5bi 232 . . . . . . . . . . . . . . 15  |-  ( i  e.  NN  ->  (
( -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) )  /\  j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  ->  j  e.  ran  ( k  e.  ( ZZ>= `  i )  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) ) )
314313anim1d 588 . . . . . . . . . . . . . 14  |-  ( i  e.  NN  ->  (
( ( -.  j  e.  ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) )  /\  j  e.  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )  ->  (
j  e.  ran  (
k  e.  ( ZZ>= `  i )  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )  /\  A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) ) ) )
315292, 314syl5 34 . . . . . . . . . . . . 13  |-  ( i  e.  NN  ->  (
j  e.  ( ( ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  -> 
( j  e.  ran  ( k  e.  (
ZZ>= `  i )  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  /\  A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) ) ) )
316315eximdv 1846 . . . . . . . . . . . 12  |-  ( i  e.  NN  ->  ( E. j  j  e.  ( ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  ->  E. j ( j  e. 
ran  ( k  e.  ( ZZ>= `  i )  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  /\  A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) ) ) )
317 n0 3931 . . . . . . . . . . . 12  |-  ( ( ( ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) 
<->  E. j  j  e.  ( ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) ) )
31866rgenw 2924 . . . . . . . . . . . . . 14  |-  A. k  e.  ( ZZ>= `  i )
( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) )  e.  _V
319 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  i
)  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  =  ( k  e.  ( ZZ>= `  i )  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) )
320 fveq1 6190 . . . . . . . . . . . . . . . . 17  |-  ( j  =  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) )  ->  ( j `  m )  =  ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m ) )
321320eleq1d 2686 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) )  ->  ( (
j `  m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  <->  ( (
( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
322321ralbidv 2986 . . . . . . . . . . . . . . 15  |-  ( j  =  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) )  ->  ( A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  <->  A. m  e.  ( 1 ... N ) ( ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) ) )
323319, 322rexrnmpt 6369 . . . . . . . . . . . . . 14  |-  ( A. k  e.  ( ZZ>= `  i ) ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) )  e. 
_V  ->  ( E. j  e.  ran  ( k  e.  ( ZZ>= `  i )  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) A. m  e.  ( 1 ... N
) ( j `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  <->  E. k  e.  (
ZZ>= `  i ) A. m  e.  ( 1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
324318, 323ax-mp 5 . . . . . . . . . . . . 13  |-  ( E. j  e.  ran  (
k  e.  ( ZZ>= `  i )  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) A. m  e.  ( 1 ... N ) ( j `  m
)  e.  ( ( c `  m ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  <->  E. k  e.  (
ZZ>= `  i ) A. m  e.  ( 1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) )
325 df-rex 2918 . . . . . . . . . . . . 13  |-  ( E. j  e.  ran  (
k  e.  ( ZZ>= `  i )  |->  ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) A. m  e.  ( 1 ... N ) ( j `  m
)  e.  ( ( c `  m ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  <->  E. j ( j  e.  ran  ( k  e.  ( ZZ>= `  i
)  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) ) )
326324, 325bitr3i 266 . . . . . . . . . . . 12  |-  ( E. k  e.  ( ZZ>= `  i ) A. m  e.  ( 1 ... N
) ( ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  <->  E. j ( j  e.  ran  ( k  e.  ( ZZ>= `  i
)  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  /\  A. m  e.  ( 1 ... N ) ( j `  m )  e.  ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) ) )
327316, 317, 3263imtr4g 285 . . . . . . . . . . 11  |-  ( i  e.  NN  ->  (
( ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/)  ->  E. k  e.  (
ZZ>= `  i ) A. m  e.  ( 1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
328327adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  I )  /\  i  e.  NN )  ->  (
( ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/)  ->  E. k  e.  (
ZZ>= `  i ) A. m  e.  ( 1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
329260, 328embantd 59 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  I )  /\  i  e.  NN )  ->  (
( c  e.  ( ( X_ m  e.  ( 1 ... N
) ( ( c `
 m ) (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  ->  ( (
( X_ m  e.  ( 1 ... N ) ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  i^i  I )  \  (
( ( k  e.  NN  |->  ( ( 1st `  ( G `  k
) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) " (
1..^ i ) ) 
\  { c } ) )  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) )  ->  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
330249, 329syl5 34 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  I )  /\  i  e.  NN )  ->  (
( ( ( X_ m  e.  ( 1 ... N ) ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) )  i^i  I ) 
\  ( ( ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) " ( 1..^ i ) )  \  { c } ) )  e.  ( Rt  I )  /\  A. v  e.  ( Rt  I ) ( c  e.  v  ->  (
v  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) ) )  ->  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
331244, 330mpand 711 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  I )  /\  i  e.  NN )  ->  ( A. v  e.  ( Rt  I ) ( c  e.  v  ->  (
v  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) )  ->  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
332331ralrimdva 2969 . . . . . 6  |-  ( (
ph  /\  c  e.  I )  ->  ( A. v  e.  ( Rt  I ) ( c  e.  v  ->  (
v  i^i  ( ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  \  { c } ) )  =/=  (/) )  ->  A. i  e.  NN  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
333199, 332sylbid 230 . . . . 5  |-  ( (
ph  /\  c  e.  I )  ->  (
c  e.  ( (
limPt `  ( Rt  I ) ) `  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  ->  A. i  e.  NN  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
334333reximdva 3017 . . . 4  |-  ( ph  ->  ( E. c  e.  I  c  e.  ( ( limPt `  ( Rt  I
) ) `  ran  ( k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) )  ->  E. c  e.  I  A. i  e.  NN  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
335194, 334syld 47 . . 3  |-  ( ph  ->  ( -.  ran  (
k  e.  NN  |->  ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  e.  Fin  ->  E. c  e.  I  A. i  e.  NN  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) ) ) )
336148, 335pm2.61d 170 . 2  |-  ( ph  ->  E. c  e.  I  A. i  e.  NN  E. k  e.  ( ZZ>= `  i ) A. m  e.  ( 1 ... N
) ( ( ( 1st `  ( G `
 k ) )  oF  /  (
( 1 ... N
)  X.  { k } ) ) `  m )  e.  ( ( c `  m
) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) ( 1  /  i ) ) )
337 poimir.0 . . . 4  |-  ( ph  ->  N  e.  NN )
338 poimir.1 . . . 4  |-  ( ph  ->  F  e.  ( ( Rt  I )  Cn  R
) )
339 poimirlem30.x . . . 4  |-  X  =  ( ( F `  ( ( ( 1st `  ( G `  k
) )  oF  +  ( ( ( ( 2nd `  ( G `  k )
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( G `  k )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  oF  /  ( ( 1 ... N )  X.  { k } ) ) ) `  n )
340 poimirlem30.4 . . . 4  |-  ( (
ph  /\  ( k  e.  NN  /\  n  e.  ( 1 ... N
)  /\  r  e.  {  <_  ,  `'  <_  } ) )  ->  E. j  e.  ( 0 ... N
) 0 r X )
341337, 48, 149, 338, 339, 34, 39, 340poimirlem29 33438 . . 3  |-  ( ph  ->  ( A. i  e.  NN  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  ->  A. n  e.  (
1 ... N ) A. v  e.  ( Rt  I
) ( c  e.  v  ->  A. r  e.  {  <_  ,  `'  <_  } E. z  e.  v  0 r ( ( F `  z
) `  n )
) ) )
342341reximdv 3016 . 2  |-  ( ph  ->  ( E. c  e.  I  A. i  e.  NN  E. k  e.  ( ZZ>= `  i ) A. m  e.  (
1 ... N ) ( ( ( 1st `  ( G `  k )
)  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 m )  e.  ( ( c `  m ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) ( 1  / 
i ) )  ->  E. c  e.  I  A. n  e.  (
1 ... N ) A. v  e.  ( Rt  I
) ( c  e.  v  ->  A. r  e.  {  <_  ,  `'  <_  } E. z  e.  v  0 r ( ( F `  z
) `  n )
) ) )
343336, 342mpd 15 1  |-  ( ph  ->  E. c  e.  I  A. n  e.  (
1 ... N ) A. v  e.  ( Rt  I
) ( c  e.  v  ->  A. r  e.  {  <_  ,  `'  <_  } E. z  e.  v  0 r ( ( F `  z
) `  n )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   T. wtru 1484   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   omcom 7065   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   X_cixp 7908    ~~ cen 7952   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   ...cfz 12326  ..^cfzo 12465   abscabs 13974   ↾t crest 16081   topGenctg 16098   Xt_cpt 16099   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736   Topctop 20698   Clsdccld 20820   limPtclp 20938    Cn ccn 21028   Frect1 21111   Hauscha 21112   Compccmp 21189   IIcii 22678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rest 16083  df-topgen 16104  df-pt 16105  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-lp 20940  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-hmph 21559  df-ii 22680
This theorem is referenced by:  poimirlem32  33441
  Copyright terms: Public domain W3C validator