MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco1rhm Structured version   Visualization version   Unicode version

Theorem pwsco1rhm 18738
Description: Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco1rhm.y  |-  Y  =  ( R  ^s  A )
pwsco1rhm.z  |-  Z  =  ( R  ^s  B )
pwsco1rhm.c  |-  C  =  ( Base `  Z
)
pwsco1rhm.r  |-  ( ph  ->  R  e.  Ring )
pwsco1rhm.a  |-  ( ph  ->  A  e.  V )
pwsco1rhm.b  |-  ( ph  ->  B  e.  W )
pwsco1rhm.f  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
pwsco1rhm  |-  ( ph  ->  ( g  e.  C  |->  ( g  o.  F
) )  e.  ( Z RingHom  Y ) )
Distinct variable groups:    A, g    B, g    ph, g    R, g   
g, Y    C, g    g, F    g, Z
Allowed substitution hints:    V( g)    W( g)

Proof of Theorem pwsco1rhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco1rhm.r . . . 4  |-  ( ph  ->  R  e.  Ring )
2 pwsco1rhm.b . . . 4  |-  ( ph  ->  B  e.  W )
3 pwsco1rhm.z . . . . 5  |-  Z  =  ( R  ^s  B )
43pwsring 18615 . . . 4  |-  ( ( R  e.  Ring  /\  B  e.  W )  ->  Z  e.  Ring )
51, 2, 4syl2anc 693 . . 3  |-  ( ph  ->  Z  e.  Ring )
6 pwsco1rhm.a . . . 4  |-  ( ph  ->  A  e.  V )
7 pwsco1rhm.y . . . . 5  |-  Y  =  ( R  ^s  A )
87pwsring 18615 . . . 4  |-  ( ( R  e.  Ring  /\  A  e.  V )  ->  Y  e.  Ring )
91, 6, 8syl2anc 693 . . 3  |-  ( ph  ->  Y  e.  Ring )
105, 9jca 554 . 2  |-  ( ph  ->  ( Z  e.  Ring  /\  Y  e.  Ring )
)
11 pwsco1rhm.c . . . . 5  |-  C  =  ( Base `  Z
)
12 ringmnd 18556 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
131, 12syl 17 . . . . 5  |-  ( ph  ->  R  e.  Mnd )
14 pwsco1rhm.f . . . . 5  |-  ( ph  ->  F : A --> B )
157, 3, 11, 13, 6, 2, 14pwsco1mhm 17370 . . . 4  |-  ( ph  ->  ( g  e.  C  |->  ( g  o.  F
) )  e.  ( Z MndHom  Y ) )
16 ringgrp 18552 . . . . . 6  |-  ( Z  e.  Ring  ->  Z  e. 
Grp )
175, 16syl 17 . . . . 5  |-  ( ph  ->  Z  e.  Grp )
18 ringgrp 18552 . . . . . 6  |-  ( Y  e.  Ring  ->  Y  e. 
Grp )
199, 18syl 17 . . . . 5  |-  ( ph  ->  Y  e.  Grp )
20 ghmmhmb 17671 . . . . 5  |-  ( ( Z  e.  Grp  /\  Y  e.  Grp )  ->  ( Z  GrpHom  Y )  =  ( Z MndHom  Y
) )
2117, 19, 20syl2anc 693 . . . 4  |-  ( ph  ->  ( Z  GrpHom  Y )  =  ( Z MndHom  Y
) )
2215, 21eleqtrrd 2704 . . 3  |-  ( ph  ->  ( g  e.  C  |->  ( g  o.  F
) )  e.  ( Z  GrpHom  Y ) )
23 eqid 2622 . . . . 5  |-  ( (mulGrp `  R )  ^s  A )  =  ( (mulGrp `  R )  ^s  A )
24 eqid 2622 . . . . 5  |-  ( (mulGrp `  R )  ^s  B )  =  ( (mulGrp `  R )  ^s  B )
25 eqid 2622 . . . . 5  |-  ( Base `  ( (mulGrp `  R
)  ^s  B ) )  =  ( Base `  (
(mulGrp `  R )  ^s  B ) )
26 eqid 2622 . . . . . . 7  |-  (mulGrp `  R )  =  (mulGrp `  R )
2726ringmgp 18553 . . . . . 6  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
281, 27syl 17 . . . . 5  |-  ( ph  ->  (mulGrp `  R )  e.  Mnd )
2923, 24, 25, 28, 6, 2, 14pwsco1mhm 17370 . . . 4  |-  ( ph  ->  ( g  e.  (
Base `  ( (mulGrp `  R )  ^s  B ) )  |->  ( g  o.  F ) )  e.  ( ( (mulGrp `  R )  ^s  B ) MndHom 
( (mulGrp `  R
)  ^s  A ) ) )
30 eqid 2622 . . . . . . . . 9  |-  ( Base `  R )  =  (
Base `  R )
313, 30pwsbas 16147 . . . . . . . 8  |-  ( ( R  e.  Mnd  /\  B  e.  W )  ->  ( ( Base `  R
)  ^m  B )  =  ( Base `  Z
) )
3213, 2, 31syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( Base `  R
)  ^m  B )  =  ( Base `  Z
) )
3332, 11syl6eqr 2674 . . . . . 6  |-  ( ph  ->  ( ( Base `  R
)  ^m  B )  =  C )
3426, 30mgpbas 18495 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  (mulGrp `  R
) )
3524, 34pwsbas 16147 . . . . . . 7  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  B  e.  W )  ->  (
( Base `  R )  ^m  B )  =  (
Base `  ( (mulGrp `  R )  ^s  B ) ) )
3628, 2, 35syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( Base `  R
)  ^m  B )  =  ( Base `  (
(mulGrp `  R )  ^s  B ) ) )
3733, 36eqtr3d 2658 . . . . 5  |-  ( ph  ->  C  =  ( Base `  ( (mulGrp `  R
)  ^s  B ) ) )
3837mpteq1d 4738 . . . 4  |-  ( ph  ->  ( g  e.  C  |->  ( g  o.  F
) )  =  ( g  e.  ( Base `  ( (mulGrp `  R
)  ^s  B ) )  |->  ( g  o.  F ) ) )
39 eqidd 2623 . . . . 5  |-  ( ph  ->  ( Base `  (mulGrp `  Z ) )  =  ( Base `  (mulGrp `  Z ) ) )
40 eqidd 2623 . . . . 5  |-  ( ph  ->  ( Base `  (mulGrp `  Y ) )  =  ( Base `  (mulGrp `  Y ) ) )
41 eqid 2622 . . . . . . . 8  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
42 eqid 2622 . . . . . . . 8  |-  ( Base `  (mulGrp `  Z )
)  =  ( Base `  (mulGrp `  Z )
)
43 eqid 2622 . . . . . . . 8  |-  ( +g  `  (mulGrp `  Z )
)  =  ( +g  `  (mulGrp `  Z )
)
44 eqid 2622 . . . . . . . 8  |-  ( +g  `  ( (mulGrp `  R
)  ^s  B ) )  =  ( +g  `  (
(mulGrp `  R )  ^s  B ) )
453, 26, 24, 41, 42, 25, 43, 44pwsmgp 18618 . . . . . . 7  |-  ( ( R  e.  Ring  /\  B  e.  W )  ->  (
( Base `  (mulGrp `  Z
) )  =  (
Base `  ( (mulGrp `  R )  ^s  B ) )  /\  ( +g  `  (mulGrp `  Z )
)  =  ( +g  `  ( (mulGrp `  R
)  ^s  B ) ) ) )
461, 2, 45syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( Base `  (mulGrp `  Z ) )  =  ( Base `  (
(mulGrp `  R )  ^s  B ) )  /\  ( +g  `  (mulGrp `  Z ) )  =  ( +g  `  (
(mulGrp `  R )  ^s  B ) ) ) )
4746simpld 475 . . . . 5  |-  ( ph  ->  ( Base `  (mulGrp `  Z ) )  =  ( Base `  (
(mulGrp `  R )  ^s  B ) ) )
48 eqid 2622 . . . . . . . 8  |-  (mulGrp `  Y )  =  (mulGrp `  Y )
49 eqid 2622 . . . . . . . 8  |-  ( Base `  (mulGrp `  Y )
)  =  ( Base `  (mulGrp `  Y )
)
50 eqid 2622 . . . . . . . 8  |-  ( Base `  ( (mulGrp `  R
)  ^s  A ) )  =  ( Base `  (
(mulGrp `  R )  ^s  A ) )
51 eqid 2622 . . . . . . . 8  |-  ( +g  `  (mulGrp `  Y )
)  =  ( +g  `  (mulGrp `  Y )
)
52 eqid 2622 . . . . . . . 8  |-  ( +g  `  ( (mulGrp `  R
)  ^s  A ) )  =  ( +g  `  (
(mulGrp `  R )  ^s  A ) )
537, 26, 23, 48, 49, 50, 51, 52pwsmgp 18618 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  e.  V )  ->  (
( Base `  (mulGrp `  Y
) )  =  (
Base `  ( (mulGrp `  R )  ^s  A ) )  /\  ( +g  `  (mulGrp `  Y )
)  =  ( +g  `  ( (mulGrp `  R
)  ^s  A ) ) ) )
541, 6, 53syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( Base `  (mulGrp `  Y ) )  =  ( Base `  (
(mulGrp `  R )  ^s  A ) )  /\  ( +g  `  (mulGrp `  Y ) )  =  ( +g  `  (
(mulGrp `  R )  ^s  A ) ) ) )
5554simpld 475 . . . . 5  |-  ( ph  ->  ( Base `  (mulGrp `  Y ) )  =  ( Base `  (
(mulGrp `  R )  ^s  A ) ) )
5646simprd 479 . . . . . 6  |-  ( ph  ->  ( +g  `  (mulGrp `  Z ) )  =  ( +g  `  (
(mulGrp `  R )  ^s  B ) ) )
5756oveqdr 6674 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  (mulGrp `  Z ) )  /\  y  e.  ( Base `  (mulGrp `  Z )
) ) )  -> 
( x ( +g  `  (mulGrp `  Z )
) y )  =  ( x ( +g  `  ( (mulGrp `  R
)  ^s  B ) ) y ) )
5854simprd 479 . . . . . 6  |-  ( ph  ->  ( +g  `  (mulGrp `  Y ) )  =  ( +g  `  (
(mulGrp `  R )  ^s  A ) ) )
5958oveqdr 6674 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  (mulGrp `  Y ) )  /\  y  e.  ( Base `  (mulGrp `  Y )
) ) )  -> 
( x ( +g  `  (mulGrp `  Y )
) y )  =  ( x ( +g  `  ( (mulGrp `  R
)  ^s  A ) ) y ) )
6039, 40, 47, 55, 57, 59mhmpropd 17341 . . . 4  |-  ( ph  ->  ( (mulGrp `  Z
) MndHom  (mulGrp `  Y )
)  =  ( ( (mulGrp `  R )  ^s  B ) MndHom  ( (mulGrp `  R )  ^s  A ) ) )
6129, 38, 603eltr4d 2716 . . 3  |-  ( ph  ->  ( g  e.  C  |->  ( g  o.  F
) )  e.  ( (mulGrp `  Z ) MndHom  (mulGrp `  Y ) ) )
6222, 61jca 554 . 2  |-  ( ph  ->  ( ( g  e.  C  |->  ( g  o.  F ) )  e.  ( Z  GrpHom  Y )  /\  ( g  e.  C  |->  ( g  o.  F ) )  e.  ( (mulGrp `  Z
) MndHom  (mulGrp `  Y )
) ) )
6341, 48isrhm 18721 . 2  |-  ( ( g  e.  C  |->  ( g  o.  F ) )  e.  ( Z RingHom  Y )  <->  ( ( Z  e.  Ring  /\  Y  e.  Ring )  /\  (
( g  e.  C  |->  ( g  o.  F
) )  e.  ( Z  GrpHom  Y )  /\  ( g  e.  C  |->  ( g  o.  F
) )  e.  ( (mulGrp `  Z ) MndHom  (mulGrp `  Y ) ) ) ) )
6410, 62, 63sylanbrc 698 1  |-  ( ph  ->  ( g  e.  C  |->  ( g  o.  F
) )  e.  ( Z RingHom  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    |-> cmpt 4729    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Basecbs 15857   +g cplusg 15941    ^s cpws 16107   Mndcmnd 17294   MndHom cmhm 17333   Grpcgrp 17422    GrpHom cghm 17657  mulGrpcmgp 18489   Ringcrg 18547   RingHom crh 18712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-rnghom 18715
This theorem is referenced by:  evls1rhmlem  19686
  Copyright terms: Public domain W3C validator