MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexprelg Structured version   Visualization version   Unicode version

Theorem relexprelg 13778
Description: The exponentiation of a class is a relation except when the exponent is one and the class is not a relation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexprelg  |-  ( ( N  e.  NN0  /\  R  e.  V  /\  ( N  =  1  ->  Rel  R ) )  ->  Rel  ( R ^r  N ) )

Proof of Theorem relexprelg
Dummy variables  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 11294 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 eqeq1 2626 . . . . . . . 8  |-  ( n  =  1  ->  (
n  =  1  <->  1  =  1 ) )
32imbi1d 331 . . . . . . 7  |-  ( n  =  1  ->  (
( n  =  1  ->  Rel  R )  <->  ( 1  =  1  ->  Rel  R ) ) )
43anbi2d 740 . . . . . 6  |-  ( n  =  1  ->  (
( R  e.  V  /\  ( n  =  1  ->  Rel  R )
)  <->  ( R  e.  V  /\  ( 1  =  1  ->  Rel  R ) ) ) )
5 oveq2 6658 . . . . . . 7  |-  ( n  =  1  ->  ( R ^r  n )  =  ( R ^r  1 ) )
65releqd 5203 . . . . . 6  |-  ( n  =  1  ->  ( Rel  ( R ^r 
n )  <->  Rel  ( R ^r  1 ) ) )
74, 6imbi12d 334 . . . . 5  |-  ( n  =  1  ->  (
( ( R  e.  V  /\  ( n  =  1  ->  Rel  R ) )  ->  Rel  ( R ^r 
n ) )  <->  ( ( R  e.  V  /\  ( 1  =  1  ->  Rel  R )
)  ->  Rel  ( R ^r  1 ) ) ) )
8 eqeq1 2626 . . . . . . . 8  |-  ( n  =  m  ->  (
n  =  1  <->  m  =  1 ) )
98imbi1d 331 . . . . . . 7  |-  ( n  =  m  ->  (
( n  =  1  ->  Rel  R )  <->  ( m  =  1  ->  Rel  R ) ) )
109anbi2d 740 . . . . . 6  |-  ( n  =  m  ->  (
( R  e.  V  /\  ( n  =  1  ->  Rel  R )
)  <->  ( R  e.  V  /\  ( m  =  1  ->  Rel  R ) ) ) )
11 oveq2 6658 . . . . . . 7  |-  ( n  =  m  ->  ( R ^r  n )  =  ( R ^r  m ) )
1211releqd 5203 . . . . . 6  |-  ( n  =  m  ->  ( Rel  ( R ^r 
n )  <->  Rel  ( R ^r  m ) ) )
1310, 12imbi12d 334 . . . . 5  |-  ( n  =  m  ->  (
( ( R  e.  V  /\  ( n  =  1  ->  Rel  R ) )  ->  Rel  ( R ^r 
n ) )  <->  ( ( R  e.  V  /\  ( m  =  1  ->  Rel  R ) )  ->  Rel  ( R ^r  m ) ) ) )
14 eqeq1 2626 . . . . . . . 8  |-  ( n  =  ( m  + 
1 )  ->  (
n  =  1  <->  (
m  +  1 )  =  1 ) )
1514imbi1d 331 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
( n  =  1  ->  Rel  R )  <->  ( ( m  +  1 )  =  1  ->  Rel  R ) ) )
1615anbi2d 740 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  (
( R  e.  V  /\  ( n  =  1  ->  Rel  R )
)  <->  ( R  e.  V  /\  ( ( m  +  1 )  =  1  ->  Rel  R ) ) ) )
17 oveq2 6658 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  ( R ^r  n )  =  ( R ^r  ( m  + 
1 ) ) )
1817releqd 5203 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  ( Rel  ( R ^r 
n )  <->  Rel  ( R ^r  ( m  +  1 ) ) ) )
1916, 18imbi12d 334 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
( ( R  e.  V  /\  ( n  =  1  ->  Rel  R ) )  ->  Rel  ( R ^r 
n ) )  <->  ( ( R  e.  V  /\  ( ( m  + 
1 )  =  1  ->  Rel  R )
)  ->  Rel  ( R ^r  ( m  +  1 ) ) ) ) )
20 eqeq1 2626 . . . . . . . 8  |-  ( n  =  N  ->  (
n  =  1  <->  N  =  1 ) )
2120imbi1d 331 . . . . . . 7  |-  ( n  =  N  ->  (
( n  =  1  ->  Rel  R )  <->  ( N  =  1  ->  Rel  R ) ) )
2221anbi2d 740 . . . . . 6  |-  ( n  =  N  ->  (
( R  e.  V  /\  ( n  =  1  ->  Rel  R )
)  <->  ( R  e.  V  /\  ( N  =  1  ->  Rel  R ) ) ) )
23 oveq2 6658 . . . . . . 7  |-  ( n  =  N  ->  ( R ^r  n )  =  ( R ^r  N ) )
2423releqd 5203 . . . . . 6  |-  ( n  =  N  ->  ( Rel  ( R ^r 
n )  <->  Rel  ( R ^r  N ) ) )
2522, 24imbi12d 334 . . . . 5  |-  ( n  =  N  ->  (
( ( R  e.  V  /\  ( n  =  1  ->  Rel  R ) )  ->  Rel  ( R ^r 
n ) )  <->  ( ( R  e.  V  /\  ( N  =  1  ->  Rel  R ) )  ->  Rel  ( R ^r  N ) ) ) )
26 eqid 2622 . . . . . . . 8  |-  1  =  1
27 pm2.27 42 . . . . . . . 8  |-  ( 1  =  1  ->  (
( 1  =  1  ->  Rel  R )  ->  Rel  R ) )
2826, 27ax-mp 5 . . . . . . 7  |-  ( ( 1  =  1  ->  Rel  R )  ->  Rel  R )
2928adantl 482 . . . . . 6  |-  ( ( R  e.  V  /\  ( 1  =  1  ->  Rel  R )
)  ->  Rel  R )
30 relexp1g 13766 . . . . . . . 8  |-  ( R  e.  V  ->  ( R ^r  1 )  =  R )
3130adantr 481 . . . . . . 7  |-  ( ( R  e.  V  /\  ( 1  =  1  ->  Rel  R )
)  ->  ( R ^r  1 )  =  R )
3231releqd 5203 . . . . . 6  |-  ( ( R  e.  V  /\  ( 1  =  1  ->  Rel  R )
)  ->  ( Rel  ( R ^r 
1 )  <->  Rel  R ) )
3329, 32mpbird 247 . . . . 5  |-  ( ( R  e.  V  /\  ( 1  =  1  ->  Rel  R )
)  ->  Rel  ( R ^r  1 ) )
34 relco 5633 . . . . . . . . 9  |-  Rel  (
( R ^r 
m )  o.  R
)
35 relexpsucnnr 13765 . . . . . . . . . . 11  |-  ( ( R  e.  V  /\  m  e.  NN )  ->  ( R ^r 
( m  +  1 ) )  =  ( ( R ^r 
m )  o.  R
) )
3635ancoms 469 . . . . . . . . . 10  |-  ( ( m  e.  NN  /\  R  e.  V )  ->  ( R ^r 
( m  +  1 ) )  =  ( ( R ^r 
m )  o.  R
) )
3736releqd 5203 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  R  e.  V )  ->  ( Rel  ( R ^r  ( m  +  1 ) )  <->  Rel  ( ( R ^r  m )  o.  R ) ) )
3834, 37mpbiri 248 . . . . . . . 8  |-  ( ( m  e.  NN  /\  R  e.  V )  ->  Rel  ( R ^r  ( m  + 
1 ) ) )
3938a1d 25 . . . . . . 7  |-  ( ( m  e.  NN  /\  R  e.  V )  ->  ( ( ( m  +  1 )  =  1  ->  Rel  R )  ->  Rel  ( R ^r  ( m  +  1 ) ) ) )
4039expimpd 629 . . . . . 6  |-  ( m  e.  NN  ->  (
( R  e.  V  /\  ( ( m  + 
1 )  =  1  ->  Rel  R )
)  ->  Rel  ( R ^r  ( m  +  1 ) ) ) )
4140a1d 25 . . . . 5  |-  ( m  e.  NN  ->  (
( ( R  e.  V  /\  ( m  =  1  ->  Rel  R ) )  ->  Rel  ( R ^r 
m ) )  -> 
( ( R  e.  V  /\  ( ( m  +  1 )  =  1  ->  Rel  R ) )  ->  Rel  ( R ^r 
( m  +  1 ) ) ) ) )
427, 13, 19, 25, 33, 41nnind 11038 . . . 4  |-  ( N  e.  NN  ->  (
( R  e.  V  /\  ( N  =  1  ->  Rel  R )
)  ->  Rel  ( R ^r  N ) ) )
43 relexp0rel 13777 . . . . . . . 8  |-  ( R  e.  V  ->  Rel  ( R ^r 
0 ) )
4443adantl 482 . . . . . . 7  |-  ( ( N  =  0  /\  R  e.  V )  ->  Rel  ( R ^r  0 ) )
45 simpl 473 . . . . . . . . 9  |-  ( ( N  =  0  /\  R  e.  V )  ->  N  =  0 )
4645oveq2d 6666 . . . . . . . 8  |-  ( ( N  =  0  /\  R  e.  V )  ->  ( R ^r  N )  =  ( R ^r  0 ) )
4746releqd 5203 . . . . . . 7  |-  ( ( N  =  0  /\  R  e.  V )  ->  ( Rel  ( R ^r  N )  <->  Rel  ( R ^r 
0 ) ) )
4844, 47mpbird 247 . . . . . 6  |-  ( ( N  =  0  /\  R  e.  V )  ->  Rel  ( R ^r  N ) )
4948a1d 25 . . . . 5  |-  ( ( N  =  0  /\  R  e.  V )  ->  ( ( N  =  1  ->  Rel  R )  ->  Rel  ( R ^r  N ) ) )
5049expimpd 629 . . . 4  |-  ( N  =  0  ->  (
( R  e.  V  /\  ( N  =  1  ->  Rel  R )
)  ->  Rel  ( R ^r  N ) ) )
5142, 50jaoi 394 . . 3  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( ( R  e.  V  /\  ( N  =  1  ->  Rel 
R ) )  ->  Rel  ( R ^r  N ) ) )
521, 51sylbi 207 . 2  |-  ( N  e.  NN0  ->  ( ( R  e.  V  /\  ( N  =  1  ->  Rel  R ) )  ->  Rel  ( R ^r  N ) ) )
53523impib 1262 1  |-  ( ( N  e.  NN0  /\  R  e.  V  /\  ( N  =  1  ->  Rel  R ) )  ->  Rel  ( R ^r  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    o. ccom 5118   Rel wrel 5119  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   NN0cn0 11292   ^r crelexp 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-relexp 13761
This theorem is referenced by:  relexprel  13779  relexpfld  13789  relexpuzrel  13792
  Copyright terms: Public domain W3C validator