| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relexpsucnnr | Structured version Visualization version Unicode version | ||
| Description: A reduction for relation exponentiation to the right. (Contributed by RP, 22-May-2020.) |
| Ref | Expression |
|---|---|
| relexpsucnnr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2623 |
. . . 4
| |
| 2 | simprr 796 |
. . . . 5
| |
| 3 | dmeq 5324 |
. . . . . . . . . . 11
| |
| 4 | rneq 5351 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | uneq12d 3768 |
. . . . . . . . . 10
|
| 6 | 5 | reseq2d 5396 |
. . . . . . . . 9
|
| 7 | eqidd 2623 |
. . . . . . . . . . 11
| |
| 8 | coeq2 5280 |
. . . . . . . . . . . 12
| |
| 9 | 8 | mpt2eq3dv 6721 |
. . . . . . . . . . 11
|
| 10 | id 22 |
. . . . . . . . . . . 12
| |
| 11 | 10 | mpteq2dv 4745 |
. . . . . . . . . . 11
|
| 12 | 7, 9, 11 | seqeq123d 12810 |
. . . . . . . . . 10
|
| 13 | 12 | fveq1d 6193 |
. . . . . . . . 9
|
| 14 | 6, 13 | ifeq12d 4106 |
. . . . . . . 8
|
| 15 | 14 | ad2antrl 764 |
. . . . . . 7
|
| 16 | 15 | a1i 11 |
. . . . . 6
|
| 17 | eqeq1 2626 |
. . . . . . . 8
| |
| 18 | 17 | anbi2d 740 |
. . . . . . 7
|
| 19 | 18 | anbi2d 740 |
. . . . . 6
|
| 20 | eqeq1 2626 |
. . . . . . . 8
| |
| 21 | fveq2 6191 |
. . . . . . . 8
| |
| 22 | 20, 21 | ifbieq2d 4111 |
. . . . . . 7
|
| 23 | 22 | eqeq1d 2624 |
. . . . . 6
|
| 24 | 16, 19, 23 | 3imtr4d 283 |
. . . . 5
|
| 25 | 2, 24 | mpcom 38 |
. . . 4
|
| 26 | elex 3212 |
. . . . 5
| |
| 27 | 26 | adantr 481 |
. . . 4
|
| 28 | simpr 477 |
. . . . . 6
| |
| 29 | 28 | peano2nnd 11037 |
. . . . 5
|
| 30 | 29 | nnnn0d 11351 |
. . . 4
|
| 31 | dmexg 7097 |
. . . . . . . 8
| |
| 32 | rnexg 7098 |
. . . . . . . 8
| |
| 33 | unexg 6959 |
. . . . . . . 8
| |
| 34 | 31, 32, 33 | syl2anc 693 |
. . . . . . 7
|
| 35 | resiexg 7102 |
. . . . . . 7
| |
| 36 | 34, 35 | syl 17 |
. . . . . 6
|
| 37 | 36 | adantr 481 |
. . . . 5
|
| 38 | fvexd 6203 |
. . . . 5
| |
| 39 | 37, 38 | ifcld 4131 |
. . . 4
|
| 40 | 1, 25, 27, 30, 39 | ovmpt2d 6788 |
. . 3
|
| 41 | nnne0 11053 |
. . . . . 6
| |
| 42 | 41 | neneqd 2799 |
. . . . 5
|
| 43 | 29, 42 | syl 17 |
. . . 4
|
| 44 | 43 | iffalsed 4097 |
. . 3
|
| 45 | elnnuz 11724 |
. . . . . . 7
| |
| 46 | 45 | biimpi 206 |
. . . . . 6
|
| 47 | 46 | adantl 482 |
. . . . 5
|
| 48 | seqp1 12816 |
. . . . 5
| |
| 49 | 47, 48 | syl 17 |
. . . 4
|
| 50 | ovex 6678 |
. . . . . 6
| |
| 51 | simpl 473 |
. . . . . 6
| |
| 52 | eqidd 2623 |
. . . . . . 7
| |
| 53 | eqid 2622 |
. . . . . . 7
| |
| 54 | 52, 53 | fvmptg 6280 |
. . . . . 6
|
| 55 | 50, 51, 54 | sylancr 695 |
. . . . 5
|
| 56 | 55 | oveq2d 6666 |
. . . 4
|
| 57 | nfcv 2764 |
. . . . . . 7
| |
| 58 | nfcv 2764 |
. . . . . . 7
| |
| 59 | nfcv 2764 |
. . . . . . 7
| |
| 60 | nfcv 2764 |
. . . . . . 7
| |
| 61 | simpl 473 |
. . . . . . . 8
| |
| 62 | 61 | coeq1d 5283 |
. . . . . . 7
|
| 63 | 57, 58, 59, 60, 62 | cbvmpt2 6734 |
. . . . . 6
|
| 64 | oveq 6656 |
. . . . . 6
| |
| 65 | 63, 64 | mp1i 13 |
. . . . 5
|
| 66 | eqidd 2623 |
. . . . . 6
| |
| 67 | simprl 794 |
. . . . . . 7
| |
| 68 | 67 | coeq1d 5283 |
. . . . . 6
|
| 69 | fvexd 6203 |
. . . . . 6
| |
| 70 | fvex 6201 |
. . . . . . 7
| |
| 71 | coexg 7117 |
. . . . . . 7
| |
| 72 | 70, 51, 71 | sylancr 695 |
. . . . . 6
|
| 73 | 66, 68, 69, 27, 72 | ovmpt2d 6788 |
. . . . 5
|
| 74 | simpr 477 |
. . . . . . . . . . 11
| |
| 75 | 74 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 76 | 6 | adantr 481 |
. . . . . . . . . 10
|
| 77 | 12 | adantr 481 |
. . . . . . . . . . 11
|
| 78 | 77, 74 | fveq12d 6197 |
. . . . . . . . . 10
|
| 79 | 75, 76, 78 | ifbieq12d 4113 |
. . . . . . . . 9
|
| 80 | 79 | adantl 482 |
. . . . . . . 8
|
| 81 | 28 | nnnn0d 11351 |
. . . . . . . 8
|
| 82 | 37, 69 | ifcld 4131 |
. . . . . . . 8
|
| 83 | 1, 80, 27, 81, 82 | ovmpt2d 6788 |
. . . . . . 7
|
| 84 | nnne0 11053 |
. . . . . . . . . 10
| |
| 85 | 84 | adantl 482 |
. . . . . . . . 9
|
| 86 | 85 | neneqd 2799 |
. . . . . . . 8
|
| 87 | 86 | iffalsed 4097 |
. . . . . . 7
|
| 88 | 83, 87 | eqtr2d 2657 |
. . . . . 6
|
| 89 | 88 | coeq1d 5283 |
. . . . 5
|
| 90 | 65, 73, 89 | 3eqtrd 2660 |
. . . 4
|
| 91 | 49, 56, 90 | 3eqtrd 2660 |
. . 3
|
| 92 | 40, 44, 91 | 3eqtrd 2660 |
. 2
|
| 93 | df-relexp 13761 |
. . 3
| |
| 94 | oveq 6656 |
. . . . 5
| |
| 95 | oveq 6656 |
. . . . . 6
| |
| 96 | 95 | coeq1d 5283 |
. . . . 5
|
| 97 | 94, 96 | eqeq12d 2637 |
. . . 4
|
| 98 | 97 | imbi2d 330 |
. . 3
|
| 99 | 93, 98 | ax-mp 5 |
. 2
|
| 100 | 92, 99 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-seq 12802 df-relexp 13761 |
| This theorem is referenced by: relexpsucr 13769 relexpsucnnl 13772 relexpcnv 13775 relexprelg 13778 relexpnndm 13781 relexp2 37969 relexpxpnnidm 37995 relexpss1d 37997 relexpmulnn 38001 trclrelexplem 38003 relexp0a 38008 trclfvcom 38015 cotrcltrcl 38017 trclfvdecomr 38020 cotrclrcl 38034 |
| Copyright terms: Public domain | W3C validator |