MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem10 Structured version   Visualization version   Unicode version

Theorem ruclem10 14968
Description: Lemma for ruc 14972. Every first component of the  G sequence is less than every second component. That is, the sequences form a chain a1  < a2 
<...  < b2  < b1, where ai are the first components and bi are the second components. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruc.4  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
ruc.5  |-  G  =  seq 0 ( D ,  C )
ruclem10.6  |-  ( ph  ->  M  e.  NN0 )
ruclem10.7  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
ruclem10  |-  ( ph  ->  ( 1st `  ( G `  M )
)  <  ( 2nd `  ( G `  N
) ) )
Distinct variable groups:    x, m, y, F    m, G, x, y    m, M, x, y    m, N, x, y
Allowed substitution hints:    ph( x, y, m)    C( x, y, m)    D( x, y, m)

Proof of Theorem ruclem10
StepHypRef Expression
1 ruc.1 . . . . 5  |-  ( ph  ->  F : NN --> RR )
2 ruc.2 . . . . 5  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
3 ruc.4 . . . . 5  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
4 ruc.5 . . . . 5  |-  G  =  seq 0 ( D ,  C )
51, 2, 3, 4ruclem6 14964 . . . 4  |-  ( ph  ->  G : NN0 --> ( RR 
X.  RR ) )
6 ruclem10.6 . . . 4  |-  ( ph  ->  M  e.  NN0 )
75, 6ffvelrnd 6360 . . 3  |-  ( ph  ->  ( G `  M
)  e.  ( RR 
X.  RR ) )
8 xp1st 7198 . . 3  |-  ( ( G `  M )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  M
) )  e.  RR )
97, 8syl 17 . 2  |-  ( ph  ->  ( 1st `  ( G `  M )
)  e.  RR )
10 ruclem10.7 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
1110, 6ifcld 4131 . . . 4  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  NN0 )
125, 11ffvelrnd 6360 . . 3  |-  ( ph  ->  ( G `  if ( M  <_  N ,  N ,  M )
)  e.  ( RR 
X.  RR ) )
13 xp1st 7198 . . 3  |-  ( ( G `  if ( M  <_  N ,  N ,  M )
)  e.  ( RR 
X.  RR )  -> 
( 1st `  ( G `  if ( M  <_  N ,  N ,  M ) ) )  e.  RR )
1412, 13syl 17 . 2  |-  ( ph  ->  ( 1st `  ( G `  if ( M  <_  N ,  N ,  M ) ) )  e.  RR )
155, 10ffvelrnd 6360 . . 3  |-  ( ph  ->  ( G `  N
)  e.  ( RR 
X.  RR ) )
16 xp2nd 7199 . . 3  |-  ( ( G `  N )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( G `  N
) )  e.  RR )
1715, 16syl 17 . 2  |-  ( ph  ->  ( 2nd `  ( G `  N )
)  e.  RR )
186nn0red 11352 . . . . . 6  |-  ( ph  ->  M  e.  RR )
1910nn0red 11352 . . . . . 6  |-  ( ph  ->  N  e.  RR )
20 max1 12016 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  M  <_  if ( M  <_  N ,  N ,  M ) )
2118, 19, 20syl2anc 693 . . . . 5  |-  ( ph  ->  M  <_  if ( M  <_  N ,  N ,  M ) )
226nn0zd 11480 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
2311nn0zd 11480 . . . . . 6  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  ZZ )
24 eluz 11701 . . . . . 6  |-  ( ( M  e.  ZZ  /\  if ( M  <_  N ,  N ,  M )  e.  ZZ )  -> 
( if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  M )  <->  M  <_  if ( M  <_  N ,  N ,  M ) ) )
2522, 23, 24syl2anc 693 . . . . 5  |-  ( ph  ->  ( if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  M )  <->  M  <_  if ( M  <_  N ,  N ,  M ) ) )
2621, 25mpbird 247 . . . 4  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  M ) )
271, 2, 3, 4, 6, 26ruclem9 14967 . . 3  |-  ( ph  ->  ( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  if ( M  <_  N ,  N ,  M )
) )  /\  ( 2nd `  ( G `  if ( M  <_  N ,  N ,  M ) ) )  <_  ( 2nd `  ( G `  M ) ) ) )
2827simpld 475 . 2  |-  ( ph  ->  ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  if ( M  <_  N ,  N ,  M )
) ) )
29 xp2nd 7199 . . . 4  |-  ( ( G `  if ( M  <_  N ,  N ,  M )
)  e.  ( RR 
X.  RR )  -> 
( 2nd `  ( G `  if ( M  <_  N ,  N ,  M ) ) )  e.  RR )
3012, 29syl 17 . . 3  |-  ( ph  ->  ( 2nd `  ( G `  if ( M  <_  N ,  N ,  M ) ) )  e.  RR )
311, 2, 3, 4ruclem8 14966 . . . 4  |-  ( (
ph  /\  if ( M  <_  N ,  N ,  M )  e.  NN0 )  ->  ( 1st `  ( G `  if ( M  <_  N ,  N ,  M ) ) )  <  ( 2nd `  ( G `  if ( M  <_  N ,  N ,  M ) ) ) )
3211, 31mpdan 702 . . 3  |-  ( ph  ->  ( 1st `  ( G `  if ( M  <_  N ,  N ,  M ) ) )  <  ( 2nd `  ( G `  if ( M  <_  N ,  N ,  M ) ) ) )
33 max2 12018 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  N  <_  if ( M  <_  N ,  N ,  M ) )
3418, 19, 33syl2anc 693 . . . . . 6  |-  ( ph  ->  N  <_  if ( M  <_  N ,  N ,  M ) )
3510nn0zd 11480 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
36 eluz 11701 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  if ( M  <_  N ,  N ,  M )  e.  ZZ )  -> 
( if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  N )  <->  N  <_  if ( M  <_  N ,  N ,  M ) ) )
3735, 23, 36syl2anc 693 . . . . . 6  |-  ( ph  ->  ( if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  N )  <->  N  <_  if ( M  <_  N ,  N ,  M ) ) )
3834, 37mpbird 247 . . . . 5  |-  ( ph  ->  if ( M  <_  N ,  N ,  M )  e.  (
ZZ>= `  N ) )
391, 2, 3, 4, 10, 38ruclem9 14967 . . . 4  |-  ( ph  ->  ( ( 1st `  ( G `  N )
)  <_  ( 1st `  ( G `  if ( M  <_  N ,  N ,  M )
) )  /\  ( 2nd `  ( G `  if ( M  <_  N ,  N ,  M ) ) )  <_  ( 2nd `  ( G `  N ) ) ) )
4039simprd 479 . . 3  |-  ( ph  ->  ( 2nd `  ( G `  if ( M  <_  N ,  N ,  M ) ) )  <_  ( 2nd `  ( G `  N )
) )
4114, 30, 17, 32, 40ltletrd 10197 . 2  |-  ( ph  ->  ( 1st `  ( G `  if ( M  <_  N ,  N ,  M ) ) )  <  ( 2nd `  ( G `  N )
) )
429, 14, 17, 28, 41lelttrd 10195 1  |-  ( ph  ->  ( 1st `  ( G `  M )
)  <  ( 2nd `  ( G `  N
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   [_csb 3533    u. cun 3572   ifcif 4086   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  ruclem11  14969  ruclem12  14970
  Copyright terms: Public domain W3C validator