MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem11 Structured version   Visualization version   Unicode version

Theorem ruclem11 14969
Description: Lemma for ruc 14972. Closure lemmas for supremum. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruc.4  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
ruc.5  |-  G  =  seq 0 ( D ,  C )
Assertion
Ref Expression
ruclem11  |-  ( ph  ->  ( ran  ( 1st 
o.  G )  C_  RR  /\  ran  ( 1st 
o.  G )  =/=  (/)  /\  A. z  e. 
ran  ( 1st  o.  G ) z  <_ 
1 ) )
Distinct variable groups:    x, m, y    z, C    z, m, F, x, y    m, G, x, y, z    ph, z    z, D
Allowed substitution hints:    ph( x, y, m)    C( x, y, m)    D( x, y, m)

Proof of Theorem ruclem11
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 ruc.1 . . . . 5  |-  ( ph  ->  F : NN --> RR )
2 ruc.2 . . . . 5  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
3 ruc.4 . . . . 5  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
4 ruc.5 . . . . 5  |-  G  =  seq 0 ( D ,  C )
51, 2, 3, 4ruclem6 14964 . . . 4  |-  ( ph  ->  G : NN0 --> ( RR 
X.  RR ) )
6 1stcof 7196 . . . 4  |-  ( G : NN0 --> ( RR 
X.  RR )  -> 
( 1st  o.  G
) : NN0 --> RR )
75, 6syl 17 . . 3  |-  ( ph  ->  ( 1st  o.  G
) : NN0 --> RR )
8 frn 6053 . . 3  |-  ( ( 1st  o.  G ) : NN0 --> RR  ->  ran  ( 1st  o.  G
)  C_  RR )
97, 8syl 17 . 2  |-  ( ph  ->  ran  ( 1st  o.  G )  C_  RR )
10 fdm 6051 . . . . 5  |-  ( ( 1st  o.  G ) : NN0 --> RR  ->  dom  ( 1st  o.  G
)  =  NN0 )
117, 10syl 17 . . . 4  |-  ( ph  ->  dom  ( 1st  o.  G )  =  NN0 )
12 0nn0 11307 . . . . 5  |-  0  e.  NN0
13 ne0i 3921 . . . . 5  |-  ( 0  e.  NN0  ->  NN0  =/=  (/) )
1412, 13mp1i 13 . . . 4  |-  ( ph  ->  NN0  =/=  (/) )
1511, 14eqnetrd 2861 . . 3  |-  ( ph  ->  dom  ( 1st  o.  G )  =/=  (/) )
16 dm0rn0 5342 . . . 4  |-  ( dom  ( 1st  o.  G
)  =  (/)  <->  ran  ( 1st 
o.  G )  =  (/) )
1716necon3bii 2846 . . 3  |-  ( dom  ( 1st  o.  G
)  =/=  (/)  <->  ran  ( 1st 
o.  G )  =/=  (/) )
1815, 17sylib 208 . 2  |-  ( ph  ->  ran  ( 1st  o.  G )  =/=  (/) )
19 fvco3 6275 . . . . . 6  |-  ( ( G : NN0 --> ( RR 
X.  RR )  /\  n  e.  NN0 )  -> 
( ( 1st  o.  G ) `  n
)  =  ( 1st `  ( G `  n
) ) )
205, 19sylan 488 . . . . 5  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( ( 1st  o.  G ) `  n )  =  ( 1st `  ( G `
 n ) ) )
211adantr 481 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN0 )  ->  F : NN
--> RR )
222adantr 481 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN0 )  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
23 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN0 )  ->  n  e.  NN0 )
2412a1i 11 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN0 )  ->  0  e.  NN0 )
2521, 22, 3, 4, 23, 24ruclem10 14968 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G ` 
0 ) ) )
261, 2, 3, 4ruclem4 14963 . . . . . . . . . 10  |-  ( ph  ->  ( G `  0
)  =  <. 0 ,  1 >. )
2726fveq2d 6195 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  ( G `  0 )
)  =  ( 2nd `  <. 0 ,  1
>. ) )
28 c0ex 10034 . . . . . . . . . 10  |-  0  e.  _V
29 1ex 10035 . . . . . . . . . 10  |-  1  e.  _V
3028, 29op2nd 7177 . . . . . . . . 9  |-  ( 2nd `  <. 0 ,  1
>. )  =  1
3127, 30syl6eq 2672 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  ( G `  0 )
)  =  1 )
3231adantr 481 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( 2nd `  ( G `  0
) )  =  1 )
3325, 32breqtrd 4679 . . . . . 6  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( 1st `  ( G `  n
) )  <  1
)
345ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  n )  e.  ( RR  X.  RR ) )
35 xp1st 7198 . . . . . . . 8  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  n
) )  e.  RR )
3634, 35syl 17 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( 1st `  ( G `  n
) )  e.  RR )
37 1re 10039 . . . . . . 7  |-  1  e.  RR
38 ltle 10126 . . . . . . 7  |-  ( ( ( 1st `  ( G `  n )
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1st `  ( G `  n )
)  <  1  ->  ( 1st `  ( G `
 n ) )  <_  1 ) )
3936, 37, 38sylancl 694 . . . . . 6  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( ( 1st `  ( G `  n ) )  <  1  ->  ( 1st `  ( G `  n
) )  <_  1
) )
4033, 39mpd 15 . . . . 5  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( 1st `  ( G `  n
) )  <_  1
)
4120, 40eqbrtrd 4675 . . . 4  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( ( 1st  o.  G ) `  n )  <_  1
)
4241ralrimiva 2966 . . 3  |-  ( ph  ->  A. n  e.  NN0  ( ( 1st  o.  G ) `  n
)  <_  1 )
43 ffn 6045 . . . . 5  |-  ( ( 1st  o.  G ) : NN0 --> RR  ->  ( 1st  o.  G )  Fn  NN0 )
447, 43syl 17 . . . 4  |-  ( ph  ->  ( 1st  o.  G
)  Fn  NN0 )
45 breq1 4656 . . . . 5  |-  ( z  =  ( ( 1st 
o.  G ) `  n )  ->  (
z  <_  1  <->  ( ( 1st  o.  G ) `  n )  <_  1
) )
4645ralrn 6362 . . . 4  |-  ( ( 1st  o.  G )  Fn  NN0  ->  ( A. z  e.  ran  ( 1st 
o.  G ) z  <_  1  <->  A. n  e.  NN0  ( ( 1st 
o.  G ) `  n )  <_  1
) )
4744, 46syl 17 . . 3  |-  ( ph  ->  ( A. z  e. 
ran  ( 1st  o.  G ) z  <_ 
1  <->  A. n  e.  NN0  ( ( 1st  o.  G ) `  n
)  <_  1 ) )
4842, 47mpbird 247 . 2  |-  ( ph  ->  A. z  e.  ran  ( 1st  o.  G ) z  <_  1 )
499, 18, 483jca 1242 1  |-  ( ph  ->  ( ran  ( 1st 
o.  G )  C_  RR  /\  ran  ( 1st 
o.  G )  =/=  (/)  /\  A. z  e. 
ran  ( 1st  o.  G ) z  <_ 
1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   [_csb 3533    u. cun 3572    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  ruclem12  14970
  Copyright terms: Public domain W3C validator