Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgoldbeven3prm Structured version   Visualization version   Unicode version

Theorem sgoldbeven3prm 41671
Description: If the binary Goldbach conjecture is valid, then an even integer greater than 5 can be expressed as the sum of three primes: Since  ( N  -  2 ) is even iff  N is even, there would be primes  p and  q with  ( N  - 
2 )  =  ( p  +  q ), and therefore  N  =  ( ( p  +  q )  +  2 ). (Contributed by AV, 24-Dec-2021.)
Assertion
Ref Expression
sgoldbeven3prm  |-  ( A. n  e. Even  ( 4  <  n  ->  n  e. GoldbachEven  )  ->  ( ( N  e. Even  /\  6  <_  N )  ->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) ) )
Distinct variable group:    n, N, p, q, r

Proof of Theorem sgoldbeven3prm
StepHypRef Expression
1 sbgoldbb 41670 . 2  |-  ( A. n  e. Even  ( 4  <  n  ->  n  e. GoldbachEven  )  ->  A. n  e. Even  (
2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) ) )
2 2p2e4 11144 . . . . 5  |-  ( 2  +  2 )  =  4
3 evenz 41543 . . . . . . . 8  |-  ( N  e. Even  ->  N  e.  ZZ )
43zred 11482 . . . . . . 7  |-  ( N  e. Even  ->  N  e.  RR )
5 4lt6 11205 . . . . . . . 8  |-  4  <  6
6 4re 11097 . . . . . . . . 9  |-  4  e.  RR
7 6re 11101 . . . . . . . . 9  |-  6  e.  RR
8 ltletr 10129 . . . . . . . . 9  |-  ( ( 4  e.  RR  /\  6  e.  RR  /\  N  e.  RR )  ->  (
( 4  <  6  /\  6  <_  N )  ->  4  <  N
) )
96, 7, 8mp3an12 1414 . . . . . . . 8  |-  ( N  e.  RR  ->  (
( 4  <  6  /\  6  <_  N )  ->  4  <  N
) )
105, 9mpani 712 . . . . . . 7  |-  ( N  e.  RR  ->  (
6  <_  N  ->  4  <  N ) )
114, 10syl 17 . . . . . 6  |-  ( N  e. Even  ->  ( 6  <_  N  ->  4  <  N
) )
1211imp 445 . . . . 5  |-  ( ( N  e. Even  /\  6  <_  N )  ->  4  <  N )
132, 12syl5eqbr 4688 . . . 4  |-  ( ( N  e. Even  /\  6  <_  N )  ->  (
2  +  2 )  <  N )
14 2re 11090 . . . . . 6  |-  2  e.  RR
1514a1i 11 . . . . 5  |-  ( ( N  e. Even  /\  6  <_  N )  ->  2  e.  RR )
164adantr 481 . . . . 5  |-  ( ( N  e. Even  /\  6  <_  N )  ->  N  e.  RR )
1715, 15, 16ltaddsub2d 10628 . . . 4  |-  ( ( N  e. Even  /\  6  <_  N )  ->  (
( 2  +  2 )  <  N  <->  2  <  ( N  -  2 ) ) )
1813, 17mpbid 222 . . 3  |-  ( ( N  e. Even  /\  6  <_  N )  ->  2  <  ( N  -  2 ) )
19 2evenALTV 41603 . . . . . 6  |-  2  e. Even
20 emee 41615 . . . . . 6  |-  ( ( N  e. Even  /\  2  e. Even  )  ->  ( N  -  2 )  e. Even 
)
2119, 20mpan2 707 . . . . 5  |-  ( N  e. Even  ->  ( N  - 
2 )  e. Even  )
22 breq2 4657 . . . . . . . 8  |-  ( n  =  ( N  - 
2 )  ->  (
2  <  n  <->  2  <  ( N  -  2 ) ) )
23 eqeq1 2626 . . . . . . . . 9  |-  ( n  =  ( N  - 
2 )  ->  (
n  =  ( p  +  q )  <->  ( N  -  2 )  =  ( p  +  q ) ) )
24232rexbidv 3057 . . . . . . . 8  |-  ( n  =  ( N  - 
2 )  ->  ( E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q )  <->  E. p  e.  Prime  E. q  e.  Prime  ( N  -  2 )  =  ( p  +  q ) ) )
2522, 24imbi12d 334 . . . . . . 7  |-  ( n  =  ( N  - 
2 )  ->  (
( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )  <->  ( 2  <  ( N  - 
2 )  ->  E. p  e.  Prime  E. q  e.  Prime  ( N  -  2 )  =  ( p  +  q ) ) ) )
2625rspcv 3305 . . . . . 6  |-  ( ( N  -  2 )  e. Even  ->  ( A. n  e. Even  ( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )  -> 
( 2  <  ( N  -  2 )  ->  E. p  e.  Prime  E. q  e.  Prime  ( N  -  2 )  =  ( p  +  q ) ) ) )
27 2prm 15405 . . . . . . . . . . . 12  |-  2  e.  Prime
2827a1i 11 . . . . . . . . . . 11  |-  ( ( N  e. Even  /\  ( N  -  2 )  =  ( p  +  q ) )  -> 
2  e.  Prime )
29 oveq2 6658 . . . . . . . . . . . . 13  |-  ( r  =  2  ->  (
( p  +  q )  +  r )  =  ( ( p  +  q )  +  2 ) )
3029eqeq2d 2632 . . . . . . . . . . . 12  |-  ( r  =  2  ->  ( N  =  ( (
p  +  q )  +  r )  <->  N  =  ( ( p  +  q )  +  2 ) ) )
3130adantl 482 . . . . . . . . . . 11  |-  ( ( ( N  e. Even  /\  ( N  -  2
)  =  ( p  +  q ) )  /\  r  =  2 )  ->  ( N  =  ( ( p  +  q )  +  r )  <->  N  =  ( ( p  +  q )  +  2 ) ) )
323zcnd 11483 . . . . . . . . . . . . . 14  |-  ( N  e. Even  ->  N  e.  CC )
33 2cnd 11093 . . . . . . . . . . . . . 14  |-  ( N  e. Even  ->  2  e.  CC )
34 npcan 10290 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  CC  /\  2  e.  CC )  ->  ( ( N  - 
2 )  +  2 )  =  N )
3534eqcomd 2628 . . . . . . . . . . . . . 14  |-  ( ( N  e.  CC  /\  2  e.  CC )  ->  N  =  ( ( N  -  2 )  +  2 ) )
3632, 33, 35syl2anc 693 . . . . . . . . . . . . 13  |-  ( N  e. Even  ->  N  =  ( ( N  -  2 )  +  2 ) )
3736adantr 481 . . . . . . . . . . . 12  |-  ( ( N  e. Even  /\  ( N  -  2 )  =  ( p  +  q ) )  ->  N  =  ( ( N  -  2 )  +  2 ) )
38 simpr 477 . . . . . . . . . . . . 13  |-  ( ( N  e. Even  /\  ( N  -  2 )  =  ( p  +  q ) )  -> 
( N  -  2 )  =  ( p  +  q ) )
3938oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( N  e. Even  /\  ( N  -  2 )  =  ( p  +  q ) )  -> 
( ( N  - 
2 )  +  2 )  =  ( ( p  +  q )  +  2 ) )
4037, 39eqtrd 2656 . . . . . . . . . . 11  |-  ( ( N  e. Even  /\  ( N  -  2 )  =  ( p  +  q ) )  ->  N  =  ( (
p  +  q )  +  2 ) )
4128, 31, 40rspcedvd 3317 . . . . . . . . . 10  |-  ( ( N  e. Even  /\  ( N  -  2 )  =  ( p  +  q ) )  ->  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) )
4241ex 450 . . . . . . . . 9  |-  ( N  e. Even  ->  ( ( N  -  2 )  =  ( p  +  q )  ->  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) ) )
4342reximdv 3016 . . . . . . . 8  |-  ( N  e. Even  ->  ( E. q  e.  Prime  ( N  - 
2 )  =  ( p  +  q )  ->  E. q  e.  Prime  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) ) )
4443reximdv 3016 . . . . . . 7  |-  ( N  e. Even  ->  ( E. p  e.  Prime  E. q  e.  Prime  ( N  -  2 )  =  ( p  +  q )  ->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) ) )
4544imim2d 57 . . . . . 6  |-  ( N  e. Even  ->  ( ( 2  <  ( N  - 
2 )  ->  E. p  e.  Prime  E. q  e.  Prime  ( N  -  2 )  =  ( p  +  q ) )  -> 
( 2  <  ( N  -  2 )  ->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) ) ) )
4626, 45syl9r 78 . . . . 5  |-  ( N  e. Even  ->  ( ( N  -  2 )  e. Even 
->  ( A. n  e. Even 
( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )  -> 
( 2  <  ( N  -  2 )  ->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) ) ) ) )
4721, 46mpd 15 . . . 4  |-  ( N  e. Even  ->  ( A. n  e. Even  ( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )  -> 
( 2  <  ( N  -  2 )  ->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) ) ) )
4847adantr 481 . . 3  |-  ( ( N  e. Even  /\  6  <_  N )  ->  ( A. n  e. Even  ( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )  -> 
( 2  <  ( N  -  2 )  ->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) ) ) )
4918, 48mpid 44 . 2  |-  ( ( N  e. Even  /\  6  <_  N )  ->  ( A. n  e. Even  ( 2  <  n  ->  E. p  e.  Prime  E. q  e.  Prime  n  =  ( p  +  q ) )  ->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) ) )
501, 49syl5com 31 1  |-  ( A. n  e. Even  ( 4  <  n  ->  n  e. GoldbachEven  )  ->  ( ( N  e. Even  /\  6  <_  N )  ->  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  N  =  ( ( p  +  q )  +  r ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   2c2 11070   4c4 11072   6c6 11074   Primecprime 15385   Even ceven 41537   GoldbachEven cgbe 41633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-even 41539  df-odd 41540  df-gbe 41636
This theorem is referenced by:  sbgoldbm  41672
  Copyright terms: Public domain W3C validator