MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtneg Structured version   Visualization version   Unicode version

Theorem sqrtneg 14008
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqrtneg  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  -u A
)  =  ( _i  x.  ( sqr `  A
) ) )

Proof of Theorem sqrtneg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 recn 10026 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
21adantr 481 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  CC )
32negcld 10379 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  -u A  e.  CC )
4 sqrtval 13977 . . 3  |-  ( -u A  e.  CC  ->  ( sqr `  -u A
)  =  ( iota_ x  e.  CC  ( ( x ^ 2 )  =  -u A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
) )
53, 4syl 17 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  -u A
)  =  ( iota_ x  e.  CC  ( ( x ^ 2 )  =  -u A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
) )
6 sqrtneglem 14007 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( ( _i  x.  ( sqr `  A
) ) ^ 2 )  =  -u A  /\  0  <_  ( Re
`  ( _i  x.  ( sqr `  A ) ) )  /\  (
_i  x.  ( _i  x.  ( sqr `  A
) ) )  e/  RR+ ) )
7 ax-icn 9995 . . . . 5  |-  _i  e.  CC
8 resqrtcl 13994 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )
98recnd 10068 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  CC )
10 mulcl 10020 . . . . 5  |-  ( ( _i  e.  CC  /\  ( sqr `  A )  e.  CC )  -> 
( _i  x.  ( sqr `  A ) )  e.  CC )
117, 9, 10sylancr 695 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( _i  x.  ( sqr `  A ) )  e.  CC )
12 oveq1 6657 . . . . . . . . 9  |-  ( x  =  ( _i  x.  ( sqr `  A ) )  ->  ( x ^ 2 )  =  ( ( _i  x.  ( sqr `  A ) ) ^ 2 ) )
1312eqeq1d 2624 . . . . . . . 8  |-  ( x  =  ( _i  x.  ( sqr `  A ) )  ->  ( (
x ^ 2 )  =  -u A  <->  ( (
_i  x.  ( sqr `  A ) ) ^
2 )  =  -u A ) )
14 fveq2 6191 . . . . . . . . 9  |-  ( x  =  ( _i  x.  ( sqr `  A ) )  ->  ( Re `  x )  =  ( Re `  ( _i  x.  ( sqr `  A
) ) ) )
1514breq2d 4665 . . . . . . . 8  |-  ( x  =  ( _i  x.  ( sqr `  A ) )  ->  ( 0  <_  ( Re `  x )  <->  0  <_  ( Re `  ( _i  x.  ( sqr `  A
) ) ) ) )
16 oveq2 6658 . . . . . . . . 9  |-  ( x  =  ( _i  x.  ( sqr `  A ) )  ->  ( _i  x.  x )  =  ( _i  x.  ( _i  x.  ( sqr `  A
) ) ) )
17 neleq1 2902 . . . . . . . . 9  |-  ( ( _i  x.  x )  =  ( _i  x.  ( _i  x.  ( sqr `  A ) ) )  ->  ( (
_i  x.  x )  e/  RR+  <->  ( _i  x.  ( _i  x.  ( sqr `  A ) ) )  e/  RR+ )
)
1816, 17syl 17 . . . . . . . 8  |-  ( x  =  ( _i  x.  ( sqr `  A ) )  ->  ( (
_i  x.  x )  e/  RR+  <->  ( _i  x.  ( _i  x.  ( sqr `  A ) ) )  e/  RR+ )
)
1913, 15, 183anbi123d 1399 . . . . . . 7  |-  ( x  =  ( _i  x.  ( sqr `  A ) )  ->  ( (
( x ^ 2 )  =  -u A  /\  0  <_  ( Re
`  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( (
( _i  x.  ( sqr `  A ) ) ^ 2 )  = 
-u A  /\  0  <_  ( Re `  (
_i  x.  ( sqr `  A ) ) )  /\  ( _i  x.  ( _i  x.  ( sqr `  A ) ) )  e/  RR+ )
) )
2019rspcev 3309 . . . . . 6  |-  ( ( ( _i  x.  ( sqr `  A ) )  e.  CC  /\  (
( ( _i  x.  ( sqr `  A ) ) ^ 2 )  =  -u A  /\  0  <_  ( Re `  (
_i  x.  ( sqr `  A ) ) )  /\  ( _i  x.  ( _i  x.  ( sqr `  A ) ) )  e/  RR+ )
)  ->  E. x  e.  CC  ( ( x ^ 2 )  = 
-u A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)
2111, 6, 20syl2anc 693 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E. x  e.  CC  ( ( x ^
2 )  =  -u A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )
22 sqrmo 13992 . . . . . 6  |-  ( -u A  e.  CC  ->  E* x  e.  CC  (
( x ^ 2 )  =  -u A  /\  0  <_  ( Re
`  x )  /\  ( _i  x.  x
)  e/  RR+ ) )
233, 22syl 17 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E* x  e.  CC  ( ( x ^
2 )  =  -u A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )
24 reu5 3159 . . . . 5  |-  ( E! x  e.  CC  (
( x ^ 2 )  =  -u A  /\  0  <_  ( Re
`  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( E. x  e.  CC  (
( x ^ 2 )  =  -u A  /\  0  <_  ( Re
`  x )  /\  ( _i  x.  x
)  e/  RR+ )  /\  E* x  e.  CC  ( ( x ^
2 )  =  -u A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) ) )
2521, 23, 24sylanbrc 698 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E! x  e.  CC  ( ( x ^
2 )  =  -u A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )
2619riota2 6633 . . . 4  |-  ( ( ( _i  x.  ( sqr `  A ) )  e.  CC  /\  E! x  e.  CC  (
( x ^ 2 )  =  -u A  /\  0  <_  ( Re
`  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  ->  ( ( ( ( _i  x.  ( sqr `  A ) ) ^ 2 )  = 
-u A  /\  0  <_  ( Re `  (
_i  x.  ( sqr `  A ) ) )  /\  ( _i  x.  ( _i  x.  ( sqr `  A ) ) )  e/  RR+ )  <->  (
iota_ x  e.  CC  ( ( x ^
2 )  =  -u A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  =  ( _i  x.  ( sqr `  A ) ) ) )
2711, 25, 26syl2anc 693 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( ( ( _i  x.  ( sqr `  A ) ) ^
2 )  =  -u A  /\  0  <_  (
Re `  ( _i  x.  ( sqr `  A
) ) )  /\  ( _i  x.  (
_i  x.  ( sqr `  A ) ) )  e/  RR+ )  <->  ( iota_ x  e.  CC  ( ( x ^ 2 )  =  -u A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)  =  ( _i  x.  ( sqr `  A
) ) ) )
286, 27mpbid 222 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( iota_ x  e.  CC  ( ( x ^
2 )  =  -u A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  =  ( _i  x.  ( sqr `  A ) ) )
295, 28eqtrd 2656 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  -u A
)  =  ( _i  x.  ( sqr `  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    e/ wnel 2897   E.wrex 2913   E!wreu 2914   E*wrmo 2915   class class class wbr 4653   ` cfv 5888   iota_crio 6610  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   _ici 9938    x. cmul 9941    <_ cle 10075   -ucneg 10267   2c2 11070   RR+crp 11832   ^cexp 12860   Recre 13837   sqrcsqrt 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975
This theorem is referenced by:  sqrtm1  14016  sqrtnegd  14160
  Copyright terms: Public domain W3C validator