MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtneglem Structured version   Visualization version   Unicode version

Theorem sqrtneglem 14007
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqrtneglem  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( ( _i  x.  ( sqr `  A
) ) ^ 2 )  =  -u A  /\  0  <_  ( Re
`  ( _i  x.  ( sqr `  A ) ) )  /\  (
_i  x.  ( _i  x.  ( sqr `  A
) ) )  e/  RR+ ) )

Proof of Theorem sqrtneglem
StepHypRef Expression
1 ax-icn 9995 . . . 4  |-  _i  e.  CC
2 resqrtcl 13994 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )
3 recn 10026 . . . . 5  |-  ( ( sqr `  A )  e.  RR  ->  ( sqr `  A )  e.  CC )
42, 3syl 17 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  CC )
5 sqmul 12926 . . . 4  |-  ( ( _i  e.  CC  /\  ( sqr `  A )  e.  CC )  -> 
( ( _i  x.  ( sqr `  A ) ) ^ 2 )  =  ( ( _i
^ 2 )  x.  ( ( sqr `  A
) ^ 2 ) ) )
61, 4, 5sylancr 695 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( _i  x.  ( sqr `  A ) ) ^ 2 )  =  ( ( _i
^ 2 )  x.  ( ( sqr `  A
) ^ 2 ) ) )
7 i2 12965 . . . . 5  |-  ( _i
^ 2 )  = 
-u 1
87a1i 11 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( _i ^ 2 )  =  -u 1
)
9 resqrtth 13996 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  =  A )
108, 9oveq12d 6668 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( _i ^
2 )  x.  (
( sqr `  A
) ^ 2 ) )  =  ( -u
1  x.  A ) )
11 recn 10026 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
1211adantr 481 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  CC )
1312mulm1d 10482 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( -u 1  x.  A
)  =  -u A
)
146, 10, 133eqtrd 2660 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( _i  x.  ( sqr `  A ) ) ^ 2 )  =  -u A )
15 renegcl 10344 . . . 4  |-  ( ( sqr `  A )  e.  RR  ->  -u ( sqr `  A )  e.  RR )
16 0re 10040 . . . . 5  |-  0  e.  RR
17 reim0 13858 . . . . . 6  |-  ( -u ( sqr `  A )  e.  RR  ->  (
Im `  -u ( sqr `  A ) )  =  0 )
18 recn 10026 . . . . . . 7  |-  ( -u ( sqr `  A )  e.  RR  ->  -u ( sqr `  A )  e.  CC )
19 imre 13848 . . . . . . 7  |-  ( -u ( sqr `  A )  e.  CC  ->  (
Im `  -u ( sqr `  A ) )  =  ( Re `  ( -u _i  x.  -u ( sqr `  A ) ) ) )
2018, 19syl 17 . . . . . 6  |-  ( -u ( sqr `  A )  e.  RR  ->  (
Im `  -u ( sqr `  A ) )  =  ( Re `  ( -u _i  x.  -u ( sqr `  A ) ) ) )
2117, 20eqtr3d 2658 . . . . 5  |-  ( -u ( sqr `  A )  e.  RR  ->  0  =  ( Re `  ( -u _i  x.  -u ( sqr `  A ) ) ) )
22 eqle 10139 . . . . 5  |-  ( ( 0  e.  RR  /\  0  =  ( Re `  ( -u _i  x.  -u ( sqr `  A
) ) ) )  ->  0  <_  (
Re `  ( -u _i  x.  -u ( sqr `  A
) ) ) )
2316, 21, 22sylancr 695 . . . 4  |-  ( -u ( sqr `  A )  e.  RR  ->  0  <_  ( Re `  ( -u _i  x.  -u ( sqr `  A ) ) ) )
242, 15, 233syl 18 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  <_  ( Re `  ( -u _i  x.  -u ( sqr `  A
) ) ) )
25 mul2neg 10469 . . . . 5  |-  ( ( _i  e.  CC  /\  ( sqr `  A )  e.  CC )  -> 
( -u _i  x.  -u ( sqr `  A ) )  =  ( _i  x.  ( sqr `  A ) ) )
261, 4, 25sylancr 695 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( -u _i  x.  -u ( sqr `  A ) )  =  ( _i  x.  ( sqr `  A ) ) )
2726fveq2d 6195 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( Re `  ( -u _i  x.  -u ( sqr `  A ) ) )  =  ( Re
`  ( _i  x.  ( sqr `  A ) ) ) )
2824, 27breqtrd 4679 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  <_  ( Re `  ( _i  x.  ( sqr `  A ) ) ) )
29 ixi 10656 . . . . . . 7  |-  ( _i  x.  _i )  = 
-u 1
3029oveq1i 6660 . . . . . 6  |-  ( ( _i  x.  _i )  x.  ( sqr `  A
) )  =  (
-u 1  x.  ( sqr `  A ) )
31 mulass 10024 . . . . . . 7  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  ( sqr `  A )  e.  CC )  ->  (
( _i  x.  _i )  x.  ( sqr `  A ) )  =  ( _i  x.  (
_i  x.  ( sqr `  A ) ) ) )
321, 1, 31mp3an12 1414 . . . . . 6  |-  ( ( sqr `  A )  e.  CC  ->  (
( _i  x.  _i )  x.  ( sqr `  A ) )  =  ( _i  x.  (
_i  x.  ( sqr `  A ) ) ) )
33 mulm1 10471 . . . . . 6  |-  ( ( sqr `  A )  e.  CC  ->  ( -u 1  x.  ( sqr `  A ) )  = 
-u ( sqr `  A
) )
3430, 32, 333eqtr3a 2680 . . . . 5  |-  ( ( sqr `  A )  e.  CC  ->  (
_i  x.  ( _i  x.  ( sqr `  A
) ) )  = 
-u ( sqr `  A
) )
354, 34syl 17 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( _i  x.  (
_i  x.  ( sqr `  A ) ) )  =  -u ( sqr `  A
) )
36 sqrtge0 13998 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  <_  ( sqr `  A ) )
37 le0neg2 10537 . . . . . . . 8  |-  ( ( sqr `  A )  e.  RR  ->  (
0  <_  ( sqr `  A )  <->  -u ( sqr `  A )  <_  0
) )
38 lenlt 10116 . . . . . . . . 9  |-  ( (
-u ( sqr `  A
)  e.  RR  /\  0  e.  RR )  ->  ( -u ( sqr `  A )  <_  0  <->  -.  0  <  -u ( sqr `  A ) ) )
3915, 16, 38sylancl 694 . . . . . . . 8  |-  ( ( sqr `  A )  e.  RR  ->  ( -u ( sqr `  A
)  <_  0  <->  -.  0  <  -u ( sqr `  A
) ) )
4037, 39bitrd 268 . . . . . . 7  |-  ( ( sqr `  A )  e.  RR  ->  (
0  <_  ( sqr `  A )  <->  -.  0  <  -u ( sqr `  A
) ) )
412, 40syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 0  <_  ( sqr `  A )  <->  -.  0  <  -u ( sqr `  A
) ) )
4236, 41mpbid 222 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  -.  0  <  -u ( sqr `  A ) )
432, 15syl 17 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  -u ( sqr `  A
)  e.  RR )
4443biantrurd 529 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 0  <  -u ( sqr `  A )  <->  ( -u ( sqr `  A )  e.  RR  /\  0  <  -u ( sqr `  A
) ) ) )
45 elrp 11834 . . . . . 6  |-  ( -u ( sqr `  A )  e.  RR+  <->  ( -u ( sqr `  A )  e.  RR  /\  0  <  -u ( sqr `  A
) ) )
4644, 45syl6rbbr 279 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( -u ( sqr `  A
)  e.  RR+  <->  0  <  -u ( sqr `  A
) ) )
4742, 46mtbird 315 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  -.  -u ( sqr `  A
)  e.  RR+ )
4835, 47eqneltrd 2720 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  -.  ( _i  x.  (
_i  x.  ( sqr `  A ) ) )  e.  RR+ )
49 df-nel 2898 . . 3  |-  ( ( _i  x.  ( _i  x.  ( sqr `  A
) ) )  e/  RR+  <->  -.  ( _i  x.  (
_i  x.  ( sqr `  A ) ) )  e.  RR+ )
5048, 49sylibr 224 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( _i  x.  (
_i  x.  ( sqr `  A ) ) )  e/  RR+ )
5114, 28, 503jca 1242 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( ( _i  x.  ( sqr `  A
) ) ^ 2 )  =  -u A  /\  0  <_  ( Re
`  ( _i  x.  ( sqr `  A ) ) )  /\  (
_i  x.  ( _i  x.  ( sqr `  A
) ) )  e/  RR+ ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    e/ wnel 2897   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    x. cmul 9941    < clt 10074    <_ cle 10075   -ucneg 10267   2c2 11070   RR+crp 11832   ^cexp 12860   Recre 13837   Imcim 13838   sqrcsqrt 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975
This theorem is referenced by:  sqrtneg  14008  sqreu  14100
  Copyright terms: Public domain W3C validator