Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem4 Structured version   Visualization version   Unicode version

Theorem subfacp1lem4 31165
Description: Lemma for subfacp1 31168. The function  F, which swaps  1 with  M and leaves all other elements alone, is a bijection of order  2, i.e. it is its own inverse. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
subfacp1lem.a  |-  A  =  { f  |  ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y ) }
subfacp1lem1.n  |-  ( ph  ->  N  e.  NN )
subfacp1lem1.m  |-  ( ph  ->  M  e.  ( 2 ... ( N  + 
1 ) ) )
subfacp1lem1.x  |-  M  e. 
_V
subfacp1lem1.k  |-  K  =  ( ( 2 ... ( N  +  1 ) )  \  { M } )
subfacp1lem5.b  |-  B  =  { g  e.  A  |  ( ( g `
 1 )  =  M  /\  ( g `
 M )  =/=  1 ) }
subfacp1lem5.f  |-  F  =  ( (  _I  |`  K )  u.  { <. 1 ,  M >. ,  <. M , 
1 >. } )
Assertion
Ref Expression
subfacp1lem4  |-  ( ph  ->  `' F  =  F
)
Distinct variable groups:    f, g, n, x, y, A    f, F, g, x, y    f, N, g, n, x, y    B, f, g, x, y    ph, x, y    D, n   
f, K, n, x, y    f, M, g, x, y    S, n, x, y
Allowed substitution hints:    ph( f, g, n)    B( n)    D( x, y, f, g)    S( f, g)    F( n)    K( g)    M( n)

Proof of Theorem subfacp1lem4
StepHypRef Expression
1 derang.d . . . . 5  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
2 subfac.n . . . . 5  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
3 subfacp1lem.a . . . . 5  |-  A  =  { f  |  ( f : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  A. y  e.  ( 1 ... ( N  + 
1 ) ) ( f `  y )  =/=  y ) }
4 subfacp1lem1.n . . . . 5  |-  ( ph  ->  N  e.  NN )
5 subfacp1lem1.m . . . . 5  |-  ( ph  ->  M  e.  ( 2 ... ( N  + 
1 ) ) )
6 subfacp1lem1.x . . . . 5  |-  M  e. 
_V
7 subfacp1lem1.k . . . . 5  |-  K  =  ( ( 2 ... ( N  +  1 ) )  \  { M } )
8 subfacp1lem5.f . . . . 5  |-  F  =  ( (  _I  |`  K )  u.  { <. 1 ,  M >. ,  <. M , 
1 >. } )
9 f1oi 6174 . . . . . 6  |-  (  _I  |`  K ) : K -1-1-onto-> K
109a1i 11 . . . . 5  |-  ( ph  ->  (  _I  |`  K ) : K -1-1-onto-> K )
111, 2, 3, 4, 5, 6, 7, 8, 10subfacp1lem2a 31162 . . . 4  |-  ( ph  ->  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  /\  ( F ` 
1 )  =  M  /\  ( F `  M )  =  1 ) )
1211simp1d 1073 . . 3  |-  ( ph  ->  F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) ) )
13 f1ocnv 6149 . . 3  |-  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  ->  `' F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) ) )
14 f1ofn 6138 . . 3  |-  ( `' F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  ->  `' F  Fn  (
1 ... ( N  + 
1 ) ) )
1512, 13, 143syl 18 . 2  |-  ( ph  ->  `' F  Fn  (
1 ... ( N  + 
1 ) ) )
16 f1ofn 6138 . . 3  |-  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  ->  F  Fn  ( 1 ... ( N  +  1 ) ) )
1712, 16syl 17 . 2  |-  ( ph  ->  F  Fn  ( 1 ... ( N  + 
1 ) ) )
181, 2, 3, 4, 5, 6, 7subfacp1lem1 31161 . . . . . . . 8  |-  ( ph  ->  ( ( K  i^i  { 1 ,  M }
)  =  (/)  /\  ( K  u.  { 1 ,  M } )  =  ( 1 ... ( N  +  1 ) )  /\  ( # `  K )  =  ( N  -  1 ) ) )
1918simp2d 1074 . . . . . . 7  |-  ( ph  ->  ( K  u.  {
1 ,  M }
)  =  ( 1 ... ( N  + 
1 ) ) )
2019eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( x  e.  ( K  u.  { 1 ,  M } )  <-> 
x  e.  ( 1 ... ( N  + 
1 ) ) ) )
2120biimpar 502 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... ( N  +  1 ) ) )  ->  x  e.  ( K  u.  {
1 ,  M }
) )
22 elun 3753 . . . . 5  |-  ( x  e.  ( K  u.  { 1 ,  M }
)  <->  ( x  e.  K  \/  x  e. 
{ 1 ,  M } ) )
2321, 22sylib 208 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
x  e.  K  \/  x  e.  { 1 ,  M } ) )
241, 2, 3, 4, 5, 6, 7, 8, 10subfacp1lem2b 31163 . . . . . . . 8  |-  ( (
ph  /\  x  e.  K )  ->  ( F `  x )  =  ( (  _I  |`  K ) `  x
) )
25 fvresi 6439 . . . . . . . . 9  |-  ( x  e.  K  ->  (
(  _I  |`  K ) `
 x )  =  x )
2625adantl 482 . . . . . . . 8  |-  ( (
ph  /\  x  e.  K )  ->  (
(  _I  |`  K ) `
 x )  =  x )
2724, 26eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  x  e.  K )  ->  ( F `  x )  =  x )
2827fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  x  e.  K )  ->  ( F `  ( F `  x ) )  =  ( F `  x
) )
2928, 27eqtrd 2656 . . . . 5  |-  ( (
ph  /\  x  e.  K )  ->  ( F `  ( F `  x ) )  =  x )
30 vex 3203 . . . . . . 7  |-  x  e. 
_V
3130elpr 4198 . . . . . 6  |-  ( x  e.  { 1 ,  M }  <->  ( x  =  1  \/  x  =  M ) )
3211simp2d 1074 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  1
)  =  M )
3332fveq2d 6195 . . . . . . . . . 10  |-  ( ph  ->  ( F `  ( F `  1 )
)  =  ( F `
 M ) )
3411simp3d 1075 . . . . . . . . . 10  |-  ( ph  ->  ( F `  M
)  =  1 )
3533, 34eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( F `  ( F `  1 )
)  =  1 )
36 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( F `  x )  =  ( F ` 
1 ) )
3736fveq2d 6195 . . . . . . . . . 10  |-  ( x  =  1  ->  ( F `  ( F `  x ) )  =  ( F `  ( F `  1 )
) )
38 id 22 . . . . . . . . . 10  |-  ( x  =  1  ->  x  =  1 )
3937, 38eqeq12d 2637 . . . . . . . . 9  |-  ( x  =  1  ->  (
( F `  ( F `  x )
)  =  x  <->  ( F `  ( F `  1
) )  =  1 ) )
4035, 39syl5ibrcom 237 . . . . . . . 8  |-  ( ph  ->  ( x  =  1  ->  ( F `  ( F `  x ) )  =  x ) )
4134fveq2d 6195 . . . . . . . . . 10  |-  ( ph  ->  ( F `  ( F `  M )
)  =  ( F `
 1 ) )
4241, 32eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( F `  ( F `  M )
)  =  M )
43 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
4443fveq2d 6195 . . . . . . . . . 10  |-  ( x  =  M  ->  ( F `  ( F `  x ) )  =  ( F `  ( F `  M )
) )
45 id 22 . . . . . . . . . 10  |-  ( x  =  M  ->  x  =  M )
4644, 45eqeq12d 2637 . . . . . . . . 9  |-  ( x  =  M  ->  (
( F `  ( F `  x )
)  =  x  <->  ( F `  ( F `  M
) )  =  M ) )
4742, 46syl5ibrcom 237 . . . . . . . 8  |-  ( ph  ->  ( x  =  M  ->  ( F `  ( F `  x ) )  =  x ) )
4840, 47jaod 395 . . . . . . 7  |-  ( ph  ->  ( ( x  =  1  \/  x  =  M )  ->  ( F `  ( F `  x ) )  =  x ) )
4948imp 445 . . . . . 6  |-  ( (
ph  /\  ( x  =  1  \/  x  =  M ) )  -> 
( F `  ( F `  x )
)  =  x )
5031, 49sylan2b 492 . . . . 5  |-  ( (
ph  /\  x  e.  { 1 ,  M }
)  ->  ( F `  ( F `  x
) )  =  x )
5129, 50jaodan 826 . . . 4  |-  ( (
ph  /\  ( x  e.  K  \/  x  e.  { 1 ,  M } ) )  -> 
( F `  ( F `  x )
)  =  x )
5223, 51syldan 487 . . 3  |-  ( (
ph  /\  x  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( F `  ( F `  x ) )  =  x )
5312adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 ... ( N  +  1 ) ) )  ->  F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) ) )
54 f1of 6137 . . . . . 6  |-  ( F : ( 1 ... ( N  +  1 ) ) -1-1-onto-> ( 1 ... ( N  +  1 ) )  ->  F :
( 1 ... ( N  +  1 ) ) --> ( 1 ... ( N  +  1 ) ) )
5512, 54syl 17 . . . . 5  |-  ( ph  ->  F : ( 1 ... ( N  + 
1 ) ) --> ( 1 ... ( N  +  1 ) ) )
5655ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( F `  x )  e.  ( 1 ... ( N  +  1 ) ) )
57 f1ocnvfv 6534 . . . 4  |-  ( ( F : ( 1 ... ( N  + 
1 ) ) -1-1-onto-> ( 1 ... ( N  + 
1 ) )  /\  ( F `  x )  e.  ( 1 ... ( N  +  1 ) ) )  -> 
( ( F `  ( F `  x ) )  =  x  -> 
( `' F `  x )  =  ( F `  x ) ) )
5853, 56, 57syl2anc 693 . . 3  |-  ( (
ph  /\  x  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( F `  ( F `  x )
)  =  x  -> 
( `' F `  x )  =  ( F `  x ) ) )
5952, 58mpd 15 . 2  |-  ( (
ph  /\  x  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( `' F `  x )  =  ( F `  x ) )
6015, 17, 59eqfnfvd 6314 1  |-  ( ph  ->  `' F  =  F
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183    |-> cmpt 4729    _I cid 5023   `'ccnv 5113    |` cres 5116    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  subfacp1lem5  31166
  Copyright terms: Public domain W3C validator