MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubdrg Structured version   Visualization version   Unicode version

Theorem issubdrg 18805
Description: Characterize the subfields of a division ring. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypotheses
Ref Expression
issubdrg.s  |-  S  =  ( Rs  A )
issubdrg.z  |-  .0.  =  ( 0g `  R )
issubdrg.i  |-  I  =  ( invr `  R
)
Assertion
Ref Expression
issubdrg  |-  ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R )
)  ->  ( S  e.  DivRing 
<-> 
A. x  e.  ( A  \  {  .0.  } ) ( I `  x )  e.  A
) )
Distinct variable groups:    x, A    x, R    x, S    x,  .0.
Allowed substitution hint:    I( x)

Proof of Theorem issubdrg
StepHypRef Expression
1 simpllr 799 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  A  e.  (SubRing `  R ) )
2 issubdrg.s . . . . . . 7  |-  S  =  ( Rs  A )
32subrgring 18783 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
41, 3syl 17 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  S  e.  Ring )
5 simpr 477 . . . . . . . . 9  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  x  e.  ( A  \  {  .0.  } ) )
6 eldifsn 4317 . . . . . . . . 9  |-  ( x  e.  ( A  \  {  .0.  } )  <->  ( x  e.  A  /\  x  =/=  .0.  ) )
75, 6sylib 208 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  ( x  e.  A  /\  x  =/=  .0.  ) )
87simpld 475 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  x  e.  A )
92subrgbas 18789 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
101, 9syl 17 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  A  =  ( Base `  S )
)
118, 10eleqtrd 2703 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  x  e.  ( Base `  S )
)
127simprd 479 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  x  =/=  .0.  )
13 issubdrg.z . . . . . . . . 9  |-  .0.  =  ( 0g `  R )
142, 13subrg0 18787 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  .0.  =  ( 0g `  S ) )
151, 14syl 17 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  .0.  =  ( 0g `  S ) )
1612, 15neeqtrd 2863 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  x  =/=  ( 0g `  S ) )
17 eqid 2622 . . . . . . . 8  |-  ( Base `  S )  =  (
Base `  S )
18 eqid 2622 . . . . . . . 8  |-  (Unit `  S )  =  (Unit `  S )
19 eqid 2622 . . . . . . . 8  |-  ( 0g
`  S )  =  ( 0g `  S
)
2017, 18, 19drngunit 18752 . . . . . . 7  |-  ( S  e.  DivRing  ->  ( x  e.  (Unit `  S )  <->  ( x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) ) )
2120ad2antlr 763 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  ( x  e.  (Unit `  S )  <->  ( x  e.  ( Base `  S )  /\  x  =/=  ( 0g `  S
) ) ) )
2211, 16, 21mpbir2and 957 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  x  e.  (Unit `  S ) )
23 eqid 2622 . . . . . 6  |-  ( invr `  S )  =  (
invr `  S )
2418, 23, 17ringinvcl 18676 . . . . 5  |-  ( ( S  e.  Ring  /\  x  e.  (Unit `  S )
)  ->  ( ( invr `  S ) `  x )  e.  (
Base `  S )
)
254, 22, 24syl2anc 693 . . . 4  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  ( ( invr `  S ) `  x )  e.  (
Base `  S )
)
26 issubdrg.i . . . . . 6  |-  I  =  ( invr `  R
)
272, 26, 18, 23subrginv 18796 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  (Unit `  S ) )  ->  ( I `  x )  =  ( ( invr `  S
) `  x )
)
281, 22, 27syl2anc 693 . . . 4  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  ( I `  x )  =  ( ( invr `  S
) `  x )
)
2925, 28, 103eltr4d 2716 . . 3  |-  ( ( ( ( R  e.  DivRing 
/\  A  e.  (SubRing `  R ) )  /\  S  e.  DivRing )  /\  x  e.  ( A  \  {  .0.  } ) )  ->  ( I `  x )  e.  A
)
3029ralrimiva 2966 . 2  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  S  e.  DivRing )  ->  A. x  e.  ( A  \  {  .0.  } ) ( I `
 x )  e.  A )
313ad2antlr 763 . . 3  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  S  e.  Ring )
32 eqid 2622 . . . . . . . . . 10  |-  (Unit `  R )  =  (Unit `  R )
332, 32, 18subrguss 18795 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  (Unit `  S
)  C_  (Unit `  R
) )
3433ad2antlr 763 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  (Unit `  S
)  C_  (Unit `  R
) )
35 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
3635, 32, 13isdrng 18751 . . . . . . . . . 10  |-  ( R  e.  DivRing 
<->  ( R  e.  Ring  /\  (Unit `  R )  =  ( ( Base `  R )  \  {  .0.  } ) ) )
3736simprbi 480 . . . . . . . . 9  |-  ( R  e.  DivRing  ->  (Unit `  R
)  =  ( (
Base `  R )  \  {  .0.  } ) )
3837ad2antrr 762 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  (Unit `  R
)  =  ( (
Base `  R )  \  {  .0.  } ) )
3934, 38sseqtrd 3641 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  (Unit `  S
)  C_  ( ( Base `  R )  \  {  .0.  } ) )
4017, 18unitss 18660 . . . . . . . 8  |-  (Unit `  S )  C_  ( Base `  S )
419ad2antlr 763 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  A  =  (
Base `  S )
)
4240, 41syl5sseqr 3654 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  (Unit `  S
)  C_  A )
4339, 42ssind 3837 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  (Unit `  S
)  C_  ( (
( Base `  R )  \  {  .0.  } )  i^i  A ) )
4435subrgss 18781 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
4544ad2antlr 763 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  A  C_  ( Base `  R ) )
46 difin2 3890 . . . . . . 7  |-  ( A 
C_  ( Base `  R
)  ->  ( A  \  {  .0.  } )  =  ( ( (
Base `  R )  \  {  .0.  } )  i^i  A ) )
4745, 46syl 17 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  ( A  \  {  .0.  } )  =  ( ( ( Base `  R )  \  {  .0.  } )  i^i  A
) )
4843, 47sseqtr4d 3642 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  (Unit `  S
)  C_  ( A  \  {  .0.  } ) )
4944ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  (
x  e.  ( A 
\  {  .0.  }
)  /\  ( I `  x )  e.  A
) )  ->  A  C_  ( Base `  R
) )
50 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  (
x  e.  ( A 
\  {  .0.  }
)  /\  ( I `  x )  e.  A
) )  ->  x  e.  ( A  \  {  .0.  } ) )
5150, 6sylib 208 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  (
x  e.  ( A 
\  {  .0.  }
)  /\  ( I `  x )  e.  A
) )  ->  (
x  e.  A  /\  x  =/=  .0.  ) )
5251simpld 475 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  (
x  e.  ( A 
\  {  .0.  }
)  /\  ( I `  x )  e.  A
) )  ->  x  e.  A )
5349, 52sseldd 3604 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  (
x  e.  ( A 
\  {  .0.  }
)  /\  ( I `  x )  e.  A
) )  ->  x  e.  ( Base `  R
) )
5451simprd 479 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  (
x  e.  ( A 
\  {  .0.  }
)  /\  ( I `  x )  e.  A
) )  ->  x  =/=  .0.  )
5535, 32, 13drngunit 18752 . . . . . . . . . . . 12  |-  ( R  e.  DivRing  ->  ( x  e.  (Unit `  R )  <->  ( x  e.  ( Base `  R )  /\  x  =/=  .0.  ) ) )
5655ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  (
x  e.  ( A 
\  {  .0.  }
)  /\  ( I `  x )  e.  A
) )  ->  (
x  e.  (Unit `  R )  <->  ( x  e.  ( Base `  R
)  /\  x  =/=  .0.  ) ) )
5753, 54, 56mpbir2and 957 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  (
x  e.  ( A 
\  {  .0.  }
)  /\  ( I `  x )  e.  A
) )  ->  x  e.  (Unit `  R )
)
58 simprr 796 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  (
x  e.  ( A 
\  {  .0.  }
)  /\  ( I `  x )  e.  A
) )  ->  (
I `  x )  e.  A )
592, 32, 18, 26subrgunit 18798 . . . . . . . . . . 11  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  (Unit `  S )  <->  ( x  e.  (Unit `  R )  /\  x  e.  A  /\  (
I `  x )  e.  A ) ) )
6059ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  (
x  e.  ( A 
\  {  .0.  }
)  /\  ( I `  x )  e.  A
) )  ->  (
x  e.  (Unit `  S )  <->  ( x  e.  (Unit `  R )  /\  x  e.  A  /\  ( I `  x
)  e.  A ) ) )
6157, 52, 58, 60mpbir3and 1245 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  (
x  e.  ( A 
\  {  .0.  }
)  /\  ( I `  x )  e.  A
) )  ->  x  e.  (Unit `  S )
)
6261expr 643 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  x  e.  ( A  \  {  .0.  } ) )  -> 
( ( I `  x )  e.  A  ->  x  e.  (Unit `  S ) ) )
6362ralimdva 2962 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R )
)  ->  ( A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A  ->  A. x  e.  ( A  \  {  .0.  }
) x  e.  (Unit `  S ) ) )
6463imp 445 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  A. x  e.  ( A  \  {  .0.  } ) x  e.  (Unit `  S ) )
65 dfss3 3592 . . . . . 6  |-  ( ( A  \  {  .0.  } )  C_  (Unit `  S
)  <->  A. x  e.  ( A  \  {  .0.  } ) x  e.  (Unit `  S ) )
6664, 65sylibr 224 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  ( A  \  {  .0.  } )  C_  (Unit `  S ) )
6748, 66eqssd 3620 . . . 4  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  (Unit `  S
)  =  ( A 
\  {  .0.  }
) )
6814ad2antlr 763 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  .0.  =  ( 0g `  S ) )
6968sneqd 4189 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  {  .0.  }  =  { ( 0g `  S ) } )
7041, 69difeq12d 3729 . . . 4  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  ( A  \  {  .0.  } )  =  ( ( Base `  S
)  \  { ( 0g `  S ) } ) )
7167, 70eqtrd 2656 . . 3  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  (Unit `  S
)  =  ( (
Base `  S )  \  { ( 0g `  S ) } ) )
7217, 18, 19isdrng 18751 . . 3  |-  ( S  e.  DivRing 
<->  ( S  e.  Ring  /\  (Unit `  S )  =  ( ( Base `  S )  \  {
( 0g `  S
) } ) ) )
7331, 71, 72sylanbrc 698 . 2  |-  ( ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R
) )  /\  A. x  e.  ( A  \  {  .0.  } ) ( I `  x
)  e.  A )  ->  S  e.  DivRing )
7430, 73impbida 877 1  |-  ( ( R  e.  DivRing  /\  A  e.  (SubRing `  R )
)  ->  ( S  e.  DivRing 
<-> 
A. x  e.  ( A  \  {  .0.  } ) ( I `  x )  e.  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   0gc0g 16100   Ringcrg 18547  Unitcui 18639   invrcinvr 18671   DivRingcdr 18747  SubRingcsubrg 18776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-subrg 18778
This theorem is referenced by:  cnsubdrglem  19797  issdrg2  37768
  Copyright terms: Public domain W3C validator