MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubg Structured version   Visualization version   Unicode version

Theorem subsubg 17617
Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
subsubg.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subsubg  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  (SubGrp `  H )  <->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) ) )

Proof of Theorem subsubg
StepHypRef Expression
1 subgrcl 17599 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
21adantr 481 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  G  e.  Grp )
3 eqid 2622 . . . . . . . 8  |-  ( Base `  H )  =  (
Base `  H )
43subgss 17595 . . . . . . 7  |-  ( A  e.  (SubGrp `  H
)  ->  A  C_  ( Base `  H ) )
54adantl 482 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  C_  ( Base `  H ) )
6 subsubg.h . . . . . . . 8  |-  H  =  ( Gs  S )
76subgbas 17598 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
87adantr 481 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  S  =  ( Base `  H )
)
95, 8sseqtr4d 3642 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  C_  S
)
10 eqid 2622 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
1110subgss 17595 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
1211adantr 481 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  S  C_  ( Base `  G ) )
139, 12sstrd 3613 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  C_  ( Base `  G ) )
146oveq1i 6660 . . . . . . 7  |-  ( Hs  A )  =  ( ( Gs  S )s  A )
15 ressabs 15939 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
1614, 15syl5eq 2668 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  C_  S )  ->  ( Hs  A )  =  ( Gs  A ) )
179, 16syldan 487 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( Hs  A
)  =  ( Gs  A ) )
18 eqid 2622 . . . . . . 7  |-  ( Hs  A )  =  ( Hs  A )
1918subggrp 17597 . . . . . 6  |-  ( A  e.  (SubGrp `  H
)  ->  ( Hs  A
)  e.  Grp )
2019adantl 482 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( Hs  A
)  e.  Grp )
2117, 20eqeltrrd 2702 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( Gs  A
)  e.  Grp )
2210issubg 17594 . . . 4  |-  ( A  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  A  C_  ( Base `  G )  /\  ( Gs  A )  e.  Grp ) )
232, 13, 21, 22syl3anbrc 1246 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  A  e.  (SubGrp `  G ) )
2423, 9jca 554 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  (SubGrp `  H )
)  ->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) )
256subggrp 17597 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
2625adantr 481 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  H  e.  Grp )
27 simprr 796 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  A  C_  S )
287adantr 481 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  S  =  ( Base `  H
) )
2927, 28sseqtrd 3641 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  A  C_  ( Base `  H
) )
3016adantrl 752 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  =  ( Gs  A ) )
31 eqid 2622 . . . . . 6  |-  ( Gs  A )  =  ( Gs  A )
3231subggrp 17597 . . . . 5  |-  ( A  e.  (SubGrp `  G
)  ->  ( Gs  A
)  e.  Grp )
3332ad2antrl 764 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  ( Gs  A )  e.  Grp )
3430, 33eqeltrd 2701 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  e.  Grp )
353issubg 17594 . . 3  |-  ( A  e.  (SubGrp `  H
)  <->  ( H  e. 
Grp  /\  A  C_  ( Base `  H )  /\  ( Hs  A )  e.  Grp ) )
3626, 29, 34, 35syl3anbrc 1246 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  (SubGrp `  G
)  /\  A  C_  S
) )  ->  A  e.  (SubGrp `  H )
)
3724, 36impbida 877 1  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  (SubGrp `  H )  <->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   Grpcgrp 17422  SubGrpcsubg 17588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-subg 17591
This theorem is referenced by:  nmznsg  17638  subgslw  18031  subgdmdprd  18433  subgdprd  18434  ablfac1c  18470  pgpfaclem1  18480  pgpfaclem2  18481  ablfaclem3  18486
  Copyright terms: Public domain W3C validator