MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzoppg Structured version   Visualization version   Unicode version

Theorem gsumzoppg 18344
Description: The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumzoppg.b  |-  B  =  ( Base `  G
)
gsumzoppg.0  |-  .0.  =  ( 0g `  G )
gsumzoppg.z  |-  Z  =  (Cntz `  G )
gsumzoppg.o  |-  O  =  (oppg
`  G )
gsumzoppg.g  |-  ( ph  ->  G  e.  Mnd )
gsumzoppg.a  |-  ( ph  ->  A  e.  V )
gsumzoppg.f  |-  ( ph  ->  F : A --> B )
gsumzoppg.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzoppg.n  |-  ( ph  ->  F finSupp  .0.  )
Assertion
Ref Expression
gsumzoppg  |-  ( ph  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )

Proof of Theorem gsumzoppg
Dummy variables  f 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzoppg.g . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
2 gsumzoppg.o . . . . . . . . 9  |-  O  =  (oppg
`  G )
32oppgmnd 17784 . . . . . . . 8  |-  ( G  e.  Mnd  ->  O  e.  Mnd )
41, 3syl 17 . . . . . . 7  |-  ( ph  ->  O  e.  Mnd )
5 gsumzoppg.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
6 gsumzoppg.0 . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
72, 6oppgid 17786 . . . . . . . 8  |-  .0.  =  ( 0g `  O )
87gsumz 17374 . . . . . . 7  |-  ( ( O  e.  Mnd  /\  A  e.  V )  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
94, 5, 8syl2anc 693 . . . . . 6  |-  ( ph  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
106gsumz 17374 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
111, 5, 10syl2anc 693 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
129, 11eqtr4d 2659 . . . . 5  |-  ( ph  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
1312adantr 481 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( O  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
14 gsumzoppg.f . . . . . 6  |-  ( ph  ->  F : A --> B )
15 fvex 6201 . . . . . . . 8  |-  ( 0g
`  G )  e. 
_V
166, 15eqeltri 2697 . . . . . . 7  |-  .0.  e.  _V
1716a1i 11 . . . . . 6  |-  ( ph  ->  .0.  e.  _V )
18 ssid 3624 . . . . . . 7  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
19 fex 6490 . . . . . . . . . 10  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
2014, 5, 19syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  F  e.  _V )
21 suppimacnv 7306 . . . . . . . . 9  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
2220, 16, 21sylancl 694 . . . . . . . 8  |-  ( ph  ->  ( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
2322sseq1d 3632 . . . . . . 7  |-  ( ph  ->  ( ( F supp  .0.  )  C_  ( `' F " ( _V  \  {  .0.  } ) )  <->  ( `' F " ( _V  \  {  .0.  } ) ) 
C_  ( `' F " ( _V  \  {  .0.  } ) ) ) )
2418, 23mpbiri 248 . . . . . 6  |-  ( ph  ->  ( F supp  .0.  )  C_  ( `' F "
( _V  \  {  .0.  } ) ) )
2514, 5, 17, 24gsumcllem 18309 . . . . 5  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  ) )
2625oveq2d 6666 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( O  gsumg  F )  =  ( O  gsumg  ( k  e.  A  |->  .0.  ) ) )
2725oveq2d 6666 . . . 4  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
2813, 26, 273eqtr4d 2666 . . 3  |-  ( (
ph  /\  ( `' F " ( _V  \  {  .0.  } ) )  =  (/) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )
2928ex 450 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) ) )
30 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )
31 nnuz 11723 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
3230, 31syl6eleq 2711 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  ( ZZ>= `  1 )
)
3314adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> B )
34 ffn 6045 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  F  Fn  A )
35 dffn4 6121 . . . . . . . . . . . 12  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
3634, 35sylib 208 . . . . . . . . . . 11  |-  ( F : A --> B  ->  F : A -onto-> ran  F
)
37 fof 6115 . . . . . . . . . . 11  |-  ( F : A -onto-> ran  F  ->  F : A --> ran  F
)
3833, 36, 373syl 18 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> ran  F )
391adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  G  e.  Mnd )
40 gsumzoppg.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  G
)
4140submacs 17365 . . . . . . . . . . . 12  |-  ( G  e.  Mnd  ->  (SubMnd `  G )  e.  (ACS
`  B ) )
42 acsmre 16313 . . . . . . . . . . . 12  |-  ( (SubMnd `  G )  e.  (ACS
`  B )  -> 
(SubMnd `  G )  e.  (Moore `  B )
)
4339, 41, 423syl 18 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  (SubMnd `  G )  e.  (Moore `  B )
)
44 eqid 2622 . . . . . . . . . . 11  |-  (mrCls `  (SubMnd `  G ) )  =  (mrCls `  (SubMnd `  G ) )
45 frn 6053 . . . . . . . . . . . 12  |-  ( F : A --> B  ->  ran  F  C_  B )
4633, 45syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  B
)
4743, 44, 46mrcssidd 16285 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) )
4838, 47fssd 6057 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  F : A --> ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )
49 f1of1 6136 . . . . . . . . . . . 12  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) ) )
5049ad2antll 765 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> ( `' F " ( _V  \  {  .0.  } ) ) )
51 cnvimass 5485 . . . . . . . . . . . 12  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
52 fdm 6051 . . . . . . . . . . . . 13  |-  ( F : A --> B  ->  dom  F  =  A )
5333, 52syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  dom  F  =  A )
5451, 53syl5sseq 3653 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  A )
55 f1ss 6106 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> ( `' F "
( _V  \  {  .0.  } ) )  /\  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
)  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
5650, 54, 55syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
57 f1f 6101 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-1-1-> A  ->  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) --> A )
5856, 57syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> A )
59 fco 6058 . . . . . . . . 9  |-  ( ( F : A --> ( (mrCls `  (SubMnd `  G )
) `  ran  F )  /\  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> A )  -> 
( F  o.  f
) : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) --> ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
6048, 58, 59syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) --> ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
6160ffvelrnda 6359 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) )  ->  (
( F  o.  f
) `  x )  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
6244mrccl 16271 . . . . . . . . . 10  |-  ( ( (SubMnd `  G )  e.  (Moore `  B )  /\  ran  F  C_  B
)  ->  ( (mrCls `  (SubMnd `  G )
) `  ran  F )  e.  (SubMnd `  G
) )
6343, 46, 62syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  e.  (SubMnd `  G )
)
642oppgsubm 17792 . . . . . . . . 9  |-  (SubMnd `  G )  =  (SubMnd `  O )
6563, 64syl6eleq 2711 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  e.  (SubMnd `  O )
)
66 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  O )  =  ( +g  `  O )
6766submcl 17353 . . . . . . . . 9  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  e.  (SubMnd `  O )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  /\  y  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  -> 
( x ( +g  `  O ) y )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
68673expb 1266 . . . . . . . 8  |-  ( ( ( (mrCls `  (SubMnd `  G ) ) `  ran  F )  e.  (SubMnd `  O )  /\  (
x  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F )  /\  y  e.  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )  -> 
( x ( +g  `  O ) y )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
6965, 68sylan 488 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  /\  y  e.  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )  -> 
( x ( +g  `  O ) y )  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)
70 gsumzoppg.c . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
7170adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  ( Z `  ran  F ) )
72 gsumzoppg.z . . . . . . . . . . . . . 14  |-  Z  =  (Cntz `  G )
73 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  =  ( Gs  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )
7472, 44, 73cntzspan 18247 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  ran  F  C_  ( Z `  ran  F ) )  ->  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  e. CMnd )
7539, 71, 74syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( Gs  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  e. CMnd )
7673, 72submcmn2 18244 . . . . . . . . . . . . 13  |-  ( ( (mrCls `  (SubMnd `  G
) ) `  ran  F )  e.  (SubMnd `  G )  ->  (
( Gs  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)  e. CMnd  <->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  C_  ( Z `  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) ) )
7763, 76syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( Gs  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  e. CMnd  <->  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) 
C_  ( Z `  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) ) ) )
7875, 77mpbid 222 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  C_  ( Z `  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )
7978sselda 3603 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  ->  x  e.  ( Z `  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) ) )
80 eqid 2622 . . . . . . . . . . 11  |-  ( +g  `  G )  =  ( +g  `  G )
8180, 72cntzi 17762 . . . . . . . . . 10  |-  ( ( x  e.  ( Z `
 ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )
)  /\  y  e.  ( (mrCls `  (SubMnd `  G
) ) `  ran  F ) )  ->  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
8279, 81sylan 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  /\  y  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
8380, 2, 66oppgplus 17779 . . . . . . . . 9  |-  ( x ( +g  `  O
) y )  =  ( y ( +g  `  G ) x )
8482, 83syl6reqr 2675 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  x  e.  ( (mrCls `  (SubMnd `  G ) ) `  ran  F ) )  /\  y  e.  ( (mrCls `  (SubMnd `  G )
) `  ran  F ) )  ->  ( x
( +g  `  O ) y )  =  ( x ( +g  `  G
) y ) )
8584anasss 679 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) )  /\  ( x  e.  ( (mrCls `  (SubMnd `  G ) ) `
 ran  F )  /\  y  e.  (
(mrCls `  (SubMnd `  G
) ) `  ran  F ) ) )  -> 
( x ( +g  `  O ) y )  =  ( x ( +g  `  G ) y ) )
8632, 61, 69, 85seqfeq4 12850 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  (  seq 1
( ( +g  `  O
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
872, 40oppgbas 17781 . . . . . . 7  |-  B  =  ( Base `  O
)
88 eqid 2622 . . . . . . 7  |-  (Cntz `  O )  =  (Cntz `  O )
8939, 3syl 17 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  O  e.  Mnd )
905adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  A  e.  V
)
912, 72oppgcntz 17794 . . . . . . . 8  |-  ( Z `
 ran  F )  =  ( (Cntz `  O ) `  ran  F )
9271, 91syl6sseq 3651 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ran  F  C_  (
(Cntz `  O ) `  ran  F ) )
93 suppssdm 7308 . . . . . . . . . . . . . . 15  |-  ( F supp 
.0.  )  C_  dom  F
9422, 93syl6eqssr 3656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  dom  F )
9594adantl 482 . . . . . . . . . . . . 13  |-  ( ( dom  F  =  A  /\  ph )  -> 
( `' F "
( _V  \  {  .0.  } ) )  C_  dom  F )
96 eqcom 2629 . . . . . . . . . . . . . . 15  |-  ( dom 
F  =  A  <->  A  =  dom  F )
9796biimpi 206 . . . . . . . . . . . . . 14  |-  ( dom 
F  =  A  ->  A  =  dom  F )
9897adantr 481 . . . . . . . . . . . . 13  |-  ( ( dom  F  =  A  /\  ph )  ->  A  =  dom  F )
9995, 98sseqtr4d 3642 . . . . . . . . . . . 12  |-  ( ( dom  F  =  A  /\  ph )  -> 
( `' F "
( _V  \  {  .0.  } ) )  C_  A )
10099ex 450 . . . . . . . . . . 11  |-  ( dom 
F  =  A  -> 
( ph  ->  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
) )
10152, 100syl 17 . . . . . . . . . 10  |-  ( F : A --> B  -> 
( ph  ->  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
) )
10214, 101mpcom 38 . . . . . . . . 9  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  A )
103102adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  A )
10450, 103, 55syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-> A )
10523adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( F supp 
.0.  )  C_  ( `' F " ( _V 
\  {  .0.  }
) )  <->  ( `' F " ( _V  \  {  .0.  } ) ) 
C_  ( `' F " ( _V  \  {  .0.  } ) ) ) )
10618, 105mpbiri 248 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F supp  .0.  )  C_  ( `' F " ( _V  \  {  .0.  } ) ) )
107 f1ofo 6144 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )
108 forn 6118 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
-onto-> ( `' F "
( _V  \  {  .0.  } ) )  ->  ran  f  =  ( `' F " ( _V 
\  {  .0.  }
) ) )
109107, 108syl 17 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ran  f  =  ( `' F " ( _V  \  {  .0.  } ) ) )
110109sseq2d 3633 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  (
( F supp  .0.  )  C_ 
ran  f  <->  ( F supp  .0.  )  C_  ( `' F " ( _V  \  {  .0.  } ) ) ) )
111110ad2antll 765 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( F supp 
.0.  )  C_  ran  f 
<->  ( F supp  .0.  )  C_  ( `' F "
( _V  \  {  .0.  } ) ) ) )
112106, 111mpbird 247 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F supp  .0.  )  C_  ran  f )
113 eqid 2622 . . . . . . 7  |-  ( ( F  o.  f ) supp 
.0.  )  =  ( ( F  o.  f
) supp  .0.  )
11487, 7, 66, 88, 89, 90, 33, 92, 30, 104, 112, 113gsumval3 18308 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( O  gsumg  F )  =  (  seq 1
( ( +g  `  O
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
11524adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F supp  .0.  )  C_  ( `' F " ( _V  \  {  .0.  } ) ) )
116115, 111mpbird 247 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( F supp  .0.  )  C_  ran  f )
11740, 6, 80, 72, 39, 90, 33, 71, 30, 104, 116, 113gsumval3 18308 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( G  gsumg  F )  =  (  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) ) `
 ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )
11886, 114, 1173eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) )  e.  NN  /\  f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) ) ) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )
119118expr 643 . . . 4  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  {  .0.  }
) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) ) )
120119exlimdv 1861 . . 3  |-  ( (
ph  /\  ( # `  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( `' F " ( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) )  -> 
( O  gsumg  F )  =  ( G  gsumg  F ) ) )
121120expimpd 629 . 2  |-  ( ph  ->  ( ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) ) )
122 gsumzoppg.n . . . . 5  |-  ( ph  ->  F finSupp  .0.  )
123122fsuppimpd 8282 . . . 4  |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )
12422, 123eqeltrrd 2702 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
125 fz1f1o 14441 . . 3  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
126124, 125syl 17 . 2  |-  ( ph  ->  ( ( `' F " ( _V  \  {  .0.  } ) )  =  (/)  \/  ( ( # `  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( `' F "
( _V  \  {  .0.  } ) ) ) ) -1-1-onto-> ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
12729, 121, 126mpjaod 396 1  |-  ( ph  ->  ( O  gsumg  F )  =  ( G  gsumg  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275   1c1 9937   NNcn 11020   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245   Mndcmnd 17294  SubMndcsubmnd 17334  Cntzccntz 17748  oppgcoppg 17775  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-cntz 17750  df-oppg 17776  df-cmn 18195
This theorem is referenced by:  gsumzinv  18345
  Copyright terms: Public domain W3C validator