MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzf1o Structured version   Visualization version   Unicode version

Theorem gsumzf1o 18313
Description: Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 2-Jun-2019.)
Hypotheses
Ref Expression
gsumzcl.b  |-  B  =  ( Base `  G
)
gsumzcl.0  |-  .0.  =  ( 0g `  G )
gsumzcl.z  |-  Z  =  (Cntz `  G )
gsumzcl.g  |-  ( ph  ->  G  e.  Mnd )
gsumzcl.a  |-  ( ph  ->  A  e.  V )
gsumzcl.f  |-  ( ph  ->  F : A --> B )
gsumzcl.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzcl.w  |-  ( ph  ->  F finSupp  .0.  )
gsumzf1o.h  |-  ( ph  ->  H : C -1-1-onto-> A )
Assertion
Ref Expression
gsumzf1o  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )

Proof of Theorem gsumzf1o
Dummy variables  f 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.g . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
2 gsumzcl.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
3 gsumzcl.0 . . . . . . . 8  |-  .0.  =  ( 0g `  G )
43gsumz 17374 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
51, 2, 4syl2anc 693 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
6 gsumzf1o.h . . . . . . . . 9  |-  ( ph  ->  H : C -1-1-onto-> A )
7 f1of1 6136 . . . . . . . . 9  |-  ( H : C -1-1-onto-> A  ->  H : C -1-1-> A )
86, 7syl 17 . . . . . . . 8  |-  ( ph  ->  H : C -1-1-> A
)
9 f1dmex 7136 . . . . . . . 8  |-  ( ( H : C -1-1-> A  /\  A  e.  V
)  ->  C  e.  _V )
108, 2, 9syl2anc 693 . . . . . . 7  |-  ( ph  ->  C  e.  _V )
113gsumz 17374 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  C  e.  _V )  ->  ( G  gsumg  ( x  e.  C  |->  .0.  ) )  =  .0.  )
121, 10, 11syl2anc 693 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( x  e.  C  |->  .0.  ) )  =  .0.  )
135, 12eqtr4d 2659 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( x  e.  C  |->  .0.  ) ) )
1413adantr 481 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  ( G  gsumg  ( x  e.  C  |->  .0.  ) ) )
15 gsumzcl.f . . . . . 6  |-  ( ph  ->  F : A --> B )
16 fvex 6201 . . . . . . . 8  |-  ( 0g
`  G )  e. 
_V
173, 16eqeltri 2697 . . . . . . 7  |-  .0.  e.  _V
1817a1i 11 . . . . . 6  |-  ( ph  ->  .0.  e.  _V )
19 ssid 3624 . . . . . . 7  |-  ( F supp 
.0.  )  C_  ( F supp  .0.  )
2019a1i 11 . . . . . 6  |-  ( ph  ->  ( F supp  .0.  )  C_  ( F supp  .0.  )
)
2115, 2, 18, 20gsumcllem 18309 . . . . 5  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  )
)
2221oveq2d 6666 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
23 f1of 6137 . . . . . . . . 9  |-  ( H : C -1-1-onto-> A  ->  H : C
--> A )
246, 23syl 17 . . . . . . . 8  |-  ( ph  ->  H : C --> A )
2524adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  ->  H : C --> A )
2625ffvelrnda 6359 . . . . . 6  |-  ( ( ( ph  /\  ( F supp  .0.  )  =  (/) )  /\  x  e.  C
)  ->  ( H `  x )  e.  A
)
2725feqmptd 6249 . . . . . 6  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  ->  H  =  ( x  e.  C  |->  ( H `
 x ) ) )
28 eqidd 2623 . . . . . 6  |-  ( k  =  ( H `  x )  ->  .0.  =  .0.  )
2926, 27, 21, 28fmptco 6396 . . . . 5  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( F  o.  H
)  =  ( x  e.  C  |->  .0.  )
)
3029oveq2d 6666 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  ( F  o.  H
) )  =  ( G  gsumg  ( x  e.  C  |->  .0.  ) ) )
3114, 22, 303eqtr4d 2666 . . 3  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )
3231ex 450 . 2  |-  ( ph  ->  ( ( F supp  .0.  )  =  (/)  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) ) )
33 coass 5654 . . . . . . . . . . 11  |-  ( ( H  o.  `' H
)  o.  f )  =  ( H  o.  ( `' H  o.  f
) )
346adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  H : C
-1-1-onto-> A )
35 f1ococnv2 6163 . . . . . . . . . . . . . 14  |-  ( H : C -1-1-onto-> A  ->  ( H  o.  `' H )  =  (  _I  |`  A )
)
3634, 35syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( H  o.  `' H )  =  (  _I  |`  A )
)
3736coeq1d 5283 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( ( H  o.  `' H
)  o.  f )  =  ( (  _I  |`  A )  o.  f
) )
38 f1of1 6136 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( F supp  .0.  )
)
3938ad2antll 765 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-> ( F supp  .0.  ) )
40 suppssdm 7308 . . . . . . . . . . . . . . . 16  |-  ( F supp 
.0.  )  C_  dom  F
41 fdm 6051 . . . . . . . . . . . . . . . . 17  |-  ( F : A --> B  ->  dom  F  =  A )
4215, 41syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  F  =  A )
4340, 42syl5sseq 3653 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F supp  .0.  )  C_  A )
4443adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  A )
45 f1ss 6106 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( F supp  .0.  )  /\  ( F supp  .0.  )  C_  A )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> A )
4639, 44, 45syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-> A
)
47 f1f 6101 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> A  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) --> A )
48 fcoi2 6079 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) --> A  ->  ( (  _I  |`  A )  o.  f )  =  f )
4946, 47, 483syl 18 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( (  _I  |`  A )  o.  f )  =  f )
5037, 49eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( ( H  o.  `' H
)  o.  f )  =  f )
5133, 50syl5reqr 2671 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f  =  ( H  o.  ( `' H  o.  f
) ) )
5251coeq2d 5284 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F  o.  f )  =  ( F  o.  ( H  o.  ( `' H  o.  f ) ) ) )
53 coass 5654 . . . . . . . . 9  |-  ( ( F  o.  H )  o.  ( `' H  o.  f ) )  =  ( F  o.  ( H  o.  ( `' H  o.  f )
) )
5452, 53syl6eqr 2674 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F  o.  f )  =  ( ( F  o.  H
)  o.  ( `' H  o.  f ) ) )
5554seqeq3d 12809 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  seq 1
( ( +g  `  G
) ,  ( F  o.  f ) )  =  seq 1 ( ( +g  `  G
) ,  ( ( F  o.  H )  o.  ( `' H  o.  f ) ) ) )
5655fveq1d 6193 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( F supp  .0.  )
) )  =  (  seq 1 ( ( +g  `  G ) ,  ( ( F  o.  H )  o.  ( `' H  o.  f ) ) ) `
 ( # `  ( F supp  .0.  ) ) ) )
57 gsumzcl.b . . . . . . 7  |-  B  =  ( Base `  G
)
58 eqid 2622 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
59 gsumzcl.z . . . . . . 7  |-  Z  =  (Cntz `  G )
601adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  G  e.  Mnd )
612adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  A  e.  V )
6215adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  F : A
--> B )
63 gsumzcl.c . . . . . . . 8  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
6463adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  F  C_  ( Z `  ran  F
) )
65 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( # `  ( F supp  .0.  ) )  e.  NN )
66 f1ofo 6144 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-onto-> ( F supp  .0.  )
)
67 forn 6118 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-onto-> ( F supp  .0.  )  ->  ran  f  =  ( F supp  .0.  ) )
6866, 67syl 17 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  ran  f  =  ( F supp 
.0.  ) )
6968ad2antll 765 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  f  =  ( F supp  .0.  )
)
7019, 69syl5sseqr 3654 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  ran  f )
71 eqid 2622 . . . . . . 7  |-  ( ( F  o.  f ) supp 
.0.  )  =  ( ( F  o.  f
) supp  .0.  )
7257, 3, 58, 59, 60, 61, 62, 64, 65, 46, 70, 71gsumval3 18308 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  F )  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( F supp  .0.  )
) ) )
7310adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  C  e.  _V )
74 fco 6058 . . . . . . . . 9  |-  ( ( F : A --> B  /\  H : C --> A )  ->  ( F  o.  H ) : C --> B )
7515, 24, 74syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( F  o.  H
) : C --> B )
7675adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F  o.  H ) : C --> B )
77 rncoss 5386 . . . . . . . . 9  |-  ran  ( F  o.  H )  C_ 
ran  F
7859cntzidss 17770 . . . . . . . . 9  |-  ( ( ran  F  C_  ( Z `  ran  F )  /\  ran  ( F  o.  H )  C_  ran  F )  ->  ran  ( F  o.  H
)  C_  ( Z `  ran  ( F  o.  H ) ) )
7963, 77, 78sylancl 694 . . . . . . . 8  |-  ( ph  ->  ran  ( F  o.  H )  C_  ( Z `  ran  ( F  o.  H ) ) )
8079adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  ( F  o.  H )  C_  ( Z `  ran  ( F  o.  H )
) )
81 f1ocnv 6149 . . . . . . . . . 10  |-  ( H : C -1-1-onto-> A  ->  `' H : A -1-1-onto-> C )
82 f1of1 6136 . . . . . . . . . 10  |-  ( `' H : A -1-1-onto-> C  ->  `' H : A -1-1-> C
)
836, 81, 823syl 18 . . . . . . . . 9  |-  ( ph  ->  `' H : A -1-1-> C
)
8483adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  `' H : A -1-1-> C )
85 f1co 6110 . . . . . . . 8  |-  ( ( `' H : A -1-1-> C  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> A )  ->  ( `' H  o.  f
) : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> C )
8684, 46, 85syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( `' H  o.  f ) : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> C )
8719a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  ( F supp  .0.  ) )
88 fex 6490 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
8915, 2, 88syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  _V )
90 suppimacnv 7306 . . . . . . . . . . . . . 14  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
9189, 17, 90sylancl 694 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F supp  .0.  )  =  ( `' F " ( _V  \  {  .0.  } ) ) )
9291eqcomd 2628 . . . . . . . . . . . 12  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  =  ( F supp  .0.  )
)
9392adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( `' F " ( _V  \  {  .0.  } ) )  =  ( F supp  .0.  ) )
9487, 93, 693sstr4d 3648 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( `' F " ( _V  \  {  .0.  } ) ) 
C_  ran  f )
95 imass2 5501 . . . . . . . . . 10  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  C_  ran  f  ->  ( `' H " ( `' F "
( _V  \  {  .0.  } ) ) ) 
C_  ( `' H " ran  f ) )
9694, 95syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( `' H " ( `' F " ( _V  \  {  .0.  } ) ) ) 
C_  ( `' H " ran  f ) )
97 cnvco 5308 . . . . . . . . . . 11  |-  `' ( F  o.  H )  =  ( `' H  o.  `' F )
9897imaeq1i 5463 . . . . . . . . . 10  |-  ( `' ( F  o.  H
) " ( _V 
\  {  .0.  }
) )  =  ( ( `' H  o.  `' F ) " ( _V  \  {  .0.  }
) )
99 imaco 5640 . . . . . . . . . 10  |-  ( ( `' H  o.  `' F ) " ( _V  \  {  .0.  }
) )  =  ( `' H " ( `' F " ( _V 
\  {  .0.  }
) ) )
10098, 99eqtri 2644 . . . . . . . . 9  |-  ( `' ( F  o.  H
) " ( _V 
\  {  .0.  }
) )  =  ( `' H " ( `' F " ( _V 
\  {  .0.  }
) ) )
101 rnco2 5642 . . . . . . . . 9  |-  ran  ( `' H  o.  f
)  =  ( `' H " ran  f
)
10296, 100, 1013sstr4g 3646 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( `' ( F  o.  H
) " ( _V 
\  {  .0.  }
) )  C_  ran  ( `' H  o.  f
) )
103 f1oexrnex 7115 . . . . . . . . . . . . 13  |-  ( ( H : C -1-1-onto-> A  /\  A  e.  V )  ->  H  e.  _V )
1046, 2, 103syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  H  e.  _V )
105 coexg 7117 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  H  e.  _V )  ->  ( F  o.  H
)  e.  _V )
10689, 104, 105syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( F  o.  H
)  e.  _V )
107 suppimacnv 7306 . . . . . . . . . . 11  |-  ( ( ( F  o.  H
)  e.  _V  /\  .0.  e.  _V )  -> 
( ( F  o.  H ) supp  .0.  )  =  ( `' ( F  o.  H )
" ( _V  \  {  .0.  } ) ) )
108106, 17, 107sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  ( ( F  o.  H ) supp  .0.  )  =  ( `' ( F  o.  H )
" ( _V  \  {  .0.  } ) ) )
109108sseq1d 3632 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F  o.  H ) supp  .0.  )  C_  ran  ( `' H  o.  f )  <-> 
( `' ( F  o.  H ) "
( _V  \  {  .0.  } ) )  C_  ran  ( `' H  o.  f ) ) )
110109adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( (
( F  o.  H
) supp  .0.  )  C_  ran  ( `' H  o.  f )  <->  ( `' ( F  o.  H
) " ( _V 
\  {  .0.  }
) )  C_  ran  ( `' H  o.  f
) ) )
111102, 110mpbird 247 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( ( F  o.  H ) supp  .0.  )  C_  ran  ( `' H  o.  f
) )
112 eqid 2622 . . . . . . 7  |-  ( ( ( F  o.  H
)  o.  ( `' H  o.  f ) ) supp  .0.  )  =  ( ( ( F  o.  H )  o.  ( `' H  o.  f ) ) supp  .0.  )
11357, 3, 58, 59, 60, 73, 76, 80, 65, 86, 111, 112gsumval3 18308 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  ( F  o.  H ) )  =  (  seq 1 ( ( +g  `  G ) ,  ( ( F  o.  H
)  o.  ( `' H  o.  f ) ) ) `  ( # `
 ( F supp  .0.  ) ) ) )
11456, 72, 1133eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  F )  =  ( G 
gsumg  ( F  o.  H
) ) )
115114expr 643 . . . 4  |-  ( (
ph  /\  ( # `  ( F supp  .0.  ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) ) )
116115exlimdv 1861 . . 3  |-  ( (
ph  /\  ( # `  ( F supp  .0.  ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  )  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) ) )
117116expimpd 629 . 2  |-  ( ph  ->  ( ( ( # `  ( F supp  .0.  )
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )
)  ->  ( G  gsumg  F )  =  ( G 
gsumg  ( F  o.  H
) ) ) )
118 gsumzcl.w . . 3  |-  ( ph  ->  F finSupp  .0.  )
119 fsuppimp 8281 . . . 4  |-  ( F finSupp  .0.  ->  ( Fun  F  /\  ( F supp  .0.  )  e.  Fin ) )
120119simprd 479 . . 3  |-  ( F finSupp  .0.  ->  ( F supp  .0.  )  e.  Fin )
121 fz1f1o 14441 . . 3  |-  ( ( F supp  .0.  )  e.  Fin  ->  ( ( F supp 
.0.  )  =  (/)  \/  ( ( # `  ( F supp  .0.  ) )  e.  NN  /\  E. f 
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
) )
122118, 120, 1213syl 18 . 2  |-  ( ph  ->  ( ( F supp  .0.  )  =  (/)  \/  (
( # `  ( F supp 
.0.  ) )  e.  NN  /\  E. f 
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
) )
12332, 117, 122mpjaod 396 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( G  gsumg  ( F  o.  H
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    _I cid 5023   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275   1c1 9937   NNcn 11020   ...cfz 12326    seqcseq 12801   #chash 13117   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cntz 17750
This theorem is referenced by:  gsumf1o  18317  smadiadetlem3  20474
  Copyright terms: Public domain W3C validator