MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat3blem Structured version   Visualization version   Unicode version

Theorem swrdccat3blem 13495
Description: Lemma for swrdccat3b 13496. (Contributed by AV, 30-May-2018.)
Hypothesis
Ref Expression
swrdccatin12.l  |-  L  =  ( # `  A
)
Assertion
Ref Expression
swrdccat3blem  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  M  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  /\  ( L  +  ( # `  B ) )  <_  L )  ->  if ( L  <_  M ,  ( B substr  <.
( M  -  L
) ,  ( # `  B ) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M , 
( L  +  (
# `  B )
) >. ) )

Proof of Theorem swrdccat3blem
StepHypRef Expression
1 lencl 13324 . . . . . . . 8  |-  ( B  e. Word  V  ->  ( # `
 B )  e. 
NN0 )
2 nn0le0eq0 11321 . . . . . . . . 9  |-  ( (
# `  B )  e.  NN0  ->  ( ( # `
 B )  <_ 
0  <->  ( # `  B
)  =  0 ) )
32biimpd 219 . . . . . . . 8  |-  ( (
# `  B )  e.  NN0  ->  ( ( # `
 B )  <_ 
0  ->  ( # `  B
)  =  0 ) )
41, 3syl 17 . . . . . . 7  |-  ( B  e. Word  V  ->  (
( # `  B )  <_  0  ->  ( # `
 B )  =  0 ) )
54adantl 482 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( # `  B
)  <_  0  ->  (
# `  B )  =  0 ) )
6 hasheq0 13154 . . . . . . . . . . 11  |-  ( B  e. Word  V  ->  (
( # `  B )  =  0  <->  B  =  (/) ) )
76biimpd 219 . . . . . . . . . 10  |-  ( B  e. Word  V  ->  (
( # `  B )  =  0  ->  B  =  (/) ) )
87adantl 482 . . . . . . . . 9  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( # `  B
)  =  0  ->  B  =  (/) ) )
98imp 445 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( # `  B
)  =  0 )  ->  B  =  (/) )
10 lencl 13324 . . . . . . . . . . . . . . . 16  |-  ( A  e. Word  V  ->  ( # `
 A )  e. 
NN0 )
11 swrdccatin12.l . . . . . . . . . . . . . . . . . . 19  |-  L  =  ( # `  A
)
1211eqcomi 2631 . . . . . . . . . . . . . . . . . 18  |-  ( # `  A )  =  L
1312eleq1i 2692 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  A )  e.  NN0  <->  L  e.  NN0 )
14 nn0re 11301 . . . . . . . . . . . . . . . . . 18  |-  ( L  e.  NN0  ->  L  e.  RR )
15 elfz2nn0 12431 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  ( 0 ... ( L  +  0 ) )  <->  ( M  e.  NN0  /\  ( L  +  0 )  e. 
NN0  /\  M  <_  ( L  +  0 ) ) )
16 recn 10026 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( L  e.  RR  ->  L  e.  CC )
1716addid1d 10236 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( L  e.  RR  ->  ( L  +  0 )  =  L )
1817breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( L  e.  RR  ->  ( M  <_  ( L  + 
0 )  <->  M  <_  L ) )
19 nn0re 11301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( M  e.  NN0  ->  M  e.  RR )
2019anim1i 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( M  e.  NN0  /\  L  e.  RR )  ->  ( M  e.  RR  /\  L  e.  RR ) )
2120ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( L  e.  RR  /\  M  e.  NN0 )  -> 
( M  e.  RR  /\  L  e.  RR ) )
22 letri3 10123 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( M  e.  RR  /\  L  e.  RR )  ->  ( M  =  L  <-> 
( M  <_  L  /\  L  <_  M ) ) )
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( L  e.  RR  /\  M  e.  NN0 )  -> 
( M  =  L  <-> 
( M  <_  L  /\  L  <_  M ) ) )
2423biimprd 238 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( L  e.  RR  /\  M  e.  NN0 )  -> 
( ( M  <_  L  /\  L  <_  M
)  ->  M  =  L ) )
2524exp4b 632 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( L  e.  RR  ->  ( M  e.  NN0  ->  ( M  <_  L  ->  ( L  <_  M  ->  M  =  L ) ) ) )
2625com23 86 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( L  e.  RR  ->  ( M  <_  L  ->  ( M  e.  NN0  ->  ( L  <_  M  ->  M  =  L ) ) ) )
2718, 26sylbid 230 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( L  e.  RR  ->  ( M  <_  ( L  + 
0 )  ->  ( M  e.  NN0  ->  ( L  <_  M  ->  M  =  L ) ) ) )
2827com3l 89 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  <_  ( L  + 
0 )  ->  ( M  e.  NN0  ->  ( L  e.  RR  ->  ( L  <_  M  ->  M  =  L ) ) ) )
2928impcom 446 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  NN0  /\  M  <_  ( L  + 
0 ) )  -> 
( L  e.  RR  ->  ( L  <_  M  ->  M  =  L ) ) )
30293adant2 1080 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  NN0  /\  ( L  +  0
)  e.  NN0  /\  M  <_  ( L  + 
0 ) )  -> 
( L  e.  RR  ->  ( L  <_  M  ->  M  =  L ) ) )
3130com12 32 . . . . . . . . . . . . . . . . . . 19  |-  ( L  e.  RR  ->  (
( M  e.  NN0  /\  ( L  +  0 )  e.  NN0  /\  M  <_  ( L  + 
0 ) )  -> 
( L  <_  M  ->  M  =  L ) ) )
3215, 31syl5bi 232 . . . . . . . . . . . . . . . . . 18  |-  ( L  e.  RR  ->  ( M  e.  ( 0 ... ( L  + 
0 ) )  -> 
( L  <_  M  ->  M  =  L ) ) )
3314, 32syl 17 . . . . . . . . . . . . . . . . 17  |-  ( L  e.  NN0  ->  ( M  e.  ( 0 ... ( L  +  0 ) )  ->  ( L  <_  M  ->  M  =  L ) ) )
3413, 33sylbi 207 . . . . . . . . . . . . . . . 16  |-  ( (
# `  A )  e.  NN0  ->  ( M  e.  ( 0 ... ( L  +  0 ) )  ->  ( L  <_  M  ->  M  =  L ) ) )
3510, 34syl 17 . . . . . . . . . . . . . . 15  |-  ( A  e. Word  V  ->  ( M  e.  ( 0 ... ( L  + 
0 ) )  -> 
( L  <_  M  ->  M  =  L ) ) )
3635imp 445 . . . . . . . . . . . . . 14  |-  ( ( A  e. Word  V  /\  M  e.  ( 0 ... ( L  + 
0 ) ) )  ->  ( L  <_  M  ->  M  =  L ) )
37 elfznn0 12433 . . . . . . . . . . . . . . . 16  |-  ( M  e.  ( 0 ... ( L  +  0 ) )  ->  M  e.  NN0 )
38 swrd00 13418 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (/) substr  <.
0 ,  0 >.
)  =  (/)
39 swrd00 13418 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A substr  <. L ,  L >. )  =  (/)
4038, 39eqtr4i 2647 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (/) substr  <.
0 ,  0 >.
)  =  ( A substr  <. L ,  L >. )
41 nn0cn 11302 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( L  e.  NN0  ->  L  e.  CC )
4241subidd 10380 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( L  e.  NN0  ->  ( L  -  L )  =  0 )
4342opeq1d 4408 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( L  e.  NN0  ->  <. ( L  -  L ) ,  0 >.  =  <. 0 ,  0 >. )
4443oveq2d 6666 . . . . . . . . . . . . . . . . . . . . 21  |-  ( L  e.  NN0  ->  ( (/) substr  <.
( L  -  L
) ,  0 >.
)  =  ( (/) substr  <.
0 ,  0 >.
) )
4541addid1d 10236 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( L  e.  NN0  ->  ( L  +  0 )  =  L )
4645opeq2d 4409 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( L  e.  NN0  ->  <. L , 
( L  +  0 ) >.  =  <. L ,  L >. )
4746oveq2d 6666 . . . . . . . . . . . . . . . . . . . . 21  |-  ( L  e.  NN0  ->  ( A substr  <. L ,  ( L  +  0 ) >.
)  =  ( A substr  <. L ,  L >. ) )
4840, 44, 473eqtr4a 2682 . . . . . . . . . . . . . . . . . . . 20  |-  ( L  e.  NN0  ->  ( (/) substr  <.
( L  -  L
) ,  0 >.
)  =  ( A substr  <. L ,  ( L  +  0 ) >.
) )
4948a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( M  =  L  ->  ( L  e.  NN0  ->  ( (/) substr  <.
( L  -  L
) ,  0 >.
)  =  ( A substr  <. L ,  ( L  +  0 ) >.
) ) )
50 eleq1 2689 . . . . . . . . . . . . . . . . . . 19  |-  ( M  =  L  ->  ( M  e.  NN0  <->  L  e.  NN0 ) )
51 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  =  L  ->  ( M  -  L )  =  ( L  -  L ) )
5251opeq1d 4408 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  =  L  ->  <. ( M  -  L ) ,  0 >.  =  <. ( L  -  L ) ,  0 >. )
5352oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  =  L  ->  ( (/) substr  <.
( M  -  L
) ,  0 >.
)  =  ( (/) substr  <.
( L  -  L
) ,  0 >.
) )
54 opeq1 4402 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  =  L  ->  <. M , 
( L  +  0 ) >.  =  <. L ,  ( L  + 
0 ) >. )
5554oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  =  L  ->  ( A substr  <. M ,  ( L  +  0 )
>. )  =  ( A substr  <. L ,  ( L  +  0 )
>. ) )
5653, 55eqeq12d 2637 . . . . . . . . . . . . . . . . . . 19  |-  ( M  =  L  ->  (
( (/) substr  <. ( M  -  L ) ,  0
>. )  =  ( A substr  <. M ,  ( L  +  0 )
>. )  <->  ( (/) substr  <. ( L  -  L ) ,  0 >. )  =  ( A substr  <. L , 
( L  +  0 ) >. ) ) )
5749, 50, 563imtr4d 283 . . . . . . . . . . . . . . . . . 18  |-  ( M  =  L  ->  ( M  e.  NN0  ->  ( (/) substr  <.
( M  -  L
) ,  0 >.
)  =  ( A substr  <. M ,  ( L  +  0 ) >.
) ) )
5857com12 32 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  ( M  =  L  ->  ( (/) substr  <.
( M  -  L
) ,  0 >.
)  =  ( A substr  <. M ,  ( L  +  0 ) >.
) ) )
5958a1d 25 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  ( A  e. Word  V  ->  ( M  =  L  ->  (
(/) substr  <. ( M  -  L ) ,  0
>. )  =  ( A substr  <. M ,  ( L  +  0 )
>. ) ) ) )
6037, 59syl 17 . . . . . . . . . . . . . . 15  |-  ( M  e.  ( 0 ... ( L  +  0 ) )  ->  ( A  e. Word  V  ->  ( M  =  L  ->  (
(/) substr  <. ( M  -  L ) ,  0
>. )  =  ( A substr  <. M ,  ( L  +  0 )
>. ) ) ) )
6160impcom 446 . . . . . . . . . . . . . 14  |-  ( ( A  e. Word  V  /\  M  e.  ( 0 ... ( L  + 
0 ) ) )  ->  ( M  =  L  ->  ( (/) substr  <. ( M  -  L ) ,  0 >. )  =  ( A substr  <. M , 
( L  +  0 ) >. ) ) )
6236, 61syld 47 . . . . . . . . . . . . 13  |-  ( ( A  e. Word  V  /\  M  e.  ( 0 ... ( L  + 
0 ) ) )  ->  ( L  <_  M  ->  ( (/) substr  <. ( M  -  L ) ,  0 >. )  =  ( A substr  <. M , 
( L  +  0 ) >. ) ) )
6362imp 445 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  M  e.  (
0 ... ( L  + 
0 ) ) )  /\  L  <_  M
)  ->  ( (/) substr  <. ( M  -  L ) ,  0 >. )  =  ( A substr  <. M , 
( L  +  0 ) >. ) )
64 swrdcl 13419 . . . . . . . . . . . . . . . 16  |-  ( A  e. Word  V  ->  ( A substr  <. M ,  L >. )  e. Word  V )
65 ccatrid 13370 . . . . . . . . . . . . . . . 16  |-  ( ( A substr  <. M ,  L >. )  e. Word  V  -> 
( ( A substr  <. M ,  L >. ) ++  (/) )  =  ( A substr  <. M ,  L >. ) )
6664, 65syl 17 . . . . . . . . . . . . . . 15  |-  ( A  e. Word  V  ->  (
( A substr  <. M ,  L >. ) ++  (/) )  =  ( A substr  <. M ,  L >. ) )
6713, 41sylbi 207 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  A )  e.  NN0  ->  L  e.  CC )
6810, 67syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( A  e. Word  V  ->  L  e.  CC )
69 addid1 10216 . . . . . . . . . . . . . . . . . . 19  |-  ( L  e.  CC  ->  ( L  +  0 )  =  L )
7069eqcomd 2628 . . . . . . . . . . . . . . . . . 18  |-  ( L  e.  CC  ->  L  =  ( L  + 
0 ) )
7168, 70syl 17 . . . . . . . . . . . . . . . . 17  |-  ( A  e. Word  V  ->  L  =  ( L  + 
0 ) )
7271opeq2d 4409 . . . . . . . . . . . . . . . 16  |-  ( A  e. Word  V  ->  <. M ,  L >.  =  <. M , 
( L  +  0 ) >. )
7372oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( A  e. Word  V  ->  ( A substr  <. M ,  L >. )  =  ( A substr  <. M ,  ( L  +  0 ) >.
) )
7466, 73eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( A  e. Word  V  ->  (
( A substr  <. M ,  L >. ) ++  (/) )  =  ( A substr  <. M , 
( L  +  0 ) >. ) )
7574adantr 481 . . . . . . . . . . . . 13  |-  ( ( A  e. Word  V  /\  M  e.  ( 0 ... ( L  + 
0 ) ) )  ->  ( ( A substr  <. M ,  L >. ) ++  (/) )  =  ( A substr  <. M ,  ( L  +  0 )
>. ) )
7675adantr 481 . . . . . . . . . . . 12  |-  ( ( ( A  e. Word  V  /\  M  e.  (
0 ... ( L  + 
0 ) ) )  /\  -.  L  <_  M )  ->  (
( A substr  <. M ,  L >. ) ++  (/) )  =  ( A substr  <. M , 
( L  +  0 ) >. ) )
7763, 76ifeqda 4121 . . . . . . . . . . 11  |-  ( ( A  e. Word  V  /\  M  e.  ( 0 ... ( L  + 
0 ) ) )  ->  if ( L  <_  M ,  (
(/) substr  <. ( M  -  L ) ,  0
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  (/) ) )  =  ( A substr  <. M , 
( L  +  0 ) >. ) )
7877ex 450 . . . . . . . . . 10  |-  ( A  e. Word  V  ->  ( M  e.  ( 0 ... ( L  + 
0 ) )  ->  if ( L  <_  M ,  ( (/) substr  <. ( M  -  L ) ,  0 >. ) ,  ( ( A substr  <. M ,  L >. ) ++  (/) ) )  =  ( A substr  <. M ,  ( L  +  0 )
>. ) ) )
7978ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( # `  B
)  =  0 )  /\  B  =  (/) )  ->  ( M  e.  ( 0 ... ( L  +  0 ) )  ->  if ( L  <_  M ,  (
(/) substr  <. ( M  -  L ) ,  0
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  (/) ) )  =  ( A substr  <. M , 
( L  +  0 ) >. ) ) )
80 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( (
# `  B )  =  0  ->  ( L  +  ( # `  B
) )  =  ( L  +  0 ) )
8180oveq2d 6666 . . . . . . . . . . . . 13  |-  ( (
# `  B )  =  0  ->  (
0 ... ( L  +  ( # `  B ) ) )  =  ( 0 ... ( L  +  0 ) ) )
8281eleq2d 2687 . . . . . . . . . . . 12  |-  ( (
# `  B )  =  0  ->  ( M  e.  ( 0 ... ( L  +  ( # `  B ) ) )  <->  M  e.  ( 0 ... ( L  +  0 ) ) ) )
8382adantr 481 . . . . . . . . . . 11  |-  ( ( ( # `  B
)  =  0  /\  B  =  (/) )  -> 
( M  e.  ( 0 ... ( L  +  ( # `  B
) ) )  <->  M  e.  ( 0 ... ( L  +  0 ) ) ) )
84 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( # `  B
)  =  0  /\  B  =  (/) )  ->  B  =  (/) )
85 opeq2 4403 . . . . . . . . . . . . . . 15  |-  ( (
# `  B )  =  0  ->  <. ( M  -  L ) ,  ( # `  B
) >.  =  <. ( M  -  L ) ,  0 >. )
8685adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( # `  B
)  =  0  /\  B  =  (/) )  ->  <. ( M  -  L
) ,  ( # `  B ) >.  =  <. ( M  -  L ) ,  0 >. )
8784, 86oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( ( # `  B
)  =  0  /\  B  =  (/) )  -> 
( B substr  <. ( M  -  L ) ,  ( # `  B
) >. )  =  (
(/) substr  <. ( M  -  L ) ,  0
>. ) )
88 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( B  =  (/)  ->  ( ( A substr  <. M ,  L >. ) ++  B )  =  ( ( A substr  <. M ,  L >. ) ++  (/) ) )
8988adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( # `  B
)  =  0  /\  B  =  (/) )  -> 
( ( A substr  <. M ,  L >. ) ++  B )  =  ( ( A substr  <. M ,  L >. ) ++  (/) ) )
9087, 89ifeq12d 4106 . . . . . . . . . . . 12  |-  ( ( ( # `  B
)  =  0  /\  B  =  (/) )  ->  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( # `  B
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  if ( L  <_  M , 
( (/) substr  <. ( M  -  L ) ,  0
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  (/) ) ) )
9180opeq2d 4409 . . . . . . . . . . . . . 14  |-  ( (
# `  B )  =  0  ->  <. M , 
( L  +  (
# `  B )
) >.  =  <. M , 
( L  +  0 ) >. )
9291oveq2d 6666 . . . . . . . . . . . . 13  |-  ( (
# `  B )  =  0  ->  ( A substr  <. M ,  ( L  +  ( # `  B ) ) >.
)  =  ( A substr  <. M ,  ( L  +  0 ) >.
) )
9392adantr 481 . . . . . . . . . . . 12  |-  ( ( ( # `  B
)  =  0  /\  B  =  (/) )  -> 
( A substr  <. M , 
( L  +  (
# `  B )
) >. )  =  ( A substr  <. M ,  ( L  +  0 )
>. ) )
9490, 93eqeq12d 2637 . . . . . . . . . . 11  |-  ( ( ( # `  B
)  =  0  /\  B  =  (/) )  -> 
( if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  (
# `  B ) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M , 
( L  +  (
# `  B )
) >. )  <->  if ( L  <_  M ,  (
(/) substr  <. ( M  -  L ) ,  0
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  (/) ) )  =  ( A substr  <. M , 
( L  +  0 ) >. ) ) )
9583, 94imbi12d 334 . . . . . . . . . 10  |-  ( ( ( # `  B
)  =  0  /\  B  =  (/) )  -> 
( ( M  e.  ( 0 ... ( L  +  ( # `  B
) ) )  ->  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( # `  B
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M ,  ( L  +  ( # `  B
) ) >. )
)  <->  ( M  e.  ( 0 ... ( L  +  0 ) )  ->  if ( L  <_  M ,  (
(/) substr  <. ( M  -  L ) ,  0
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  (/) ) )  =  ( A substr  <. M , 
( L  +  0 ) >. ) ) ) )
9695adantll 750 . . . . . . . . 9  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( # `  B
)  =  0 )  /\  B  =  (/) )  ->  ( ( M  e.  ( 0 ... ( L  +  (
# `  B )
) )  ->  if ( L  <_  M , 
( B substr  <. ( M  -  L ) ,  ( # `  B
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M ,  ( L  +  ( # `  B
) ) >. )
)  <->  ( M  e.  ( 0 ... ( L  +  0 ) )  ->  if ( L  <_  M ,  (
(/) substr  <. ( M  -  L ) ,  0
>. ) ,  ( ( A substr  <. M ,  L >. ) ++  (/) ) )  =  ( A substr  <. M , 
( L  +  0 ) >. ) ) ) )
9779, 96mpbird 247 . . . . . . . 8  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  ( # `  B
)  =  0 )  /\  B  =  (/) )  ->  ( M  e.  ( 0 ... ( L  +  ( # `  B
) ) )  ->  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( # `  B
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M ,  ( L  +  ( # `  B
) ) >. )
) )
989, 97mpdan 702 . . . . . . 7  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  ( # `  B
)  =  0 )  ->  ( M  e.  ( 0 ... ( L  +  ( # `  B
) ) )  ->  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( # `  B
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M ,  ( L  +  ( # `  B
) ) >. )
) )
9998ex 450 . . . . . 6  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( # `  B
)  =  0  -> 
( M  e.  ( 0 ... ( L  +  ( # `  B
) ) )  ->  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( # `  B
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M ,  ( L  +  ( # `  B
) ) >. )
) ) )
1005, 99syld 47 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( # `  B
)  <_  0  ->  ( M  e.  ( 0 ... ( L  +  ( # `  B ) ) )  ->  if ( L  <_  M , 
( B substr  <. ( M  -  L ) ,  ( # `  B
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M ,  ( L  +  ( # `  B
) ) >. )
) ) )
101100com23 86 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( M  e.  ( 0 ... ( L  +  ( # `  B
) ) )  -> 
( ( # `  B
)  <_  0  ->  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( # `  B
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M ,  ( L  +  ( # `  B
) ) >. )
) ) )
102101imp 445 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( # `  B )  <_  0  ->  if ( L  <_  M ,  ( B substr  <.
( M  -  L
) ,  ( # `  B ) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M , 
( L  +  (
# `  B )
) >. ) ) )
103102adantr 481 . 2  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  M  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  /\  ( L  +  ( # `  B ) )  <_  L )  ->  ( ( # `  B
)  <_  0  ->  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( # `  B
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M ,  ( L  +  ( # `  B
) ) >. )
) )
10411eleq1i 2692 . . . . . . . 8  |-  ( L  e.  NN0  <->  ( # `  A
)  e.  NN0 )
105104, 14sylbir 225 . . . . . . 7  |-  ( (
# `  A )  e.  NN0  ->  L  e.  RR )
10610, 105syl 17 . . . . . 6  |-  ( A  e. Word  V  ->  L  e.  RR )
1071nn0red 11352 . . . . . 6  |-  ( B  e. Word  V  ->  ( # `
 B )  e.  RR )
108 leaddle0 10543 . . . . . 6  |-  ( ( L  e.  RR  /\  ( # `  B )  e.  RR )  -> 
( ( L  +  ( # `  B ) )  <_  L  <->  ( # `  B
)  <_  0 ) )
109106, 107, 108syl2an 494 . . . . 5  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( L  +  ( # `  B ) )  <_  L  <->  ( # `  B
)  <_  0 ) )
110 pm2.24 121 . . . . 5  |-  ( (
# `  B )  <_  0  ->  ( -.  ( # `  B )  <_  0  ->  if ( L  <_  M , 
( B substr  <. ( M  -  L ) ,  ( # `  B
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M ,  ( L  +  ( # `  B
) ) >. )
) )
111109, 110syl6bi 243 . . . 4  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( L  +  ( # `  B ) )  <_  L  ->  ( -.  ( # `  B
)  <_  0  ->  if ( L  <_  M ,  ( B substr  <. ( M  -  L ) ,  ( # `  B
) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M ,  ( L  +  ( # `  B
) ) >. )
) ) )
112111adantr 481 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  M  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  ->  ( ( L  +  ( # `  B
) )  <_  L  ->  ( -.  ( # `  B )  <_  0  ->  if ( L  <_  M ,  ( B substr  <.
( M  -  L
) ,  ( # `  B ) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M , 
( L  +  (
# `  B )
) >. ) ) ) )
113112imp 445 . 2  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  M  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  /\  ( L  +  ( # `  B ) )  <_  L )  ->  ( -.  ( # `  B )  <_  0  ->  if ( L  <_  M ,  ( B substr  <.
( M  -  L
) ,  ( # `  B ) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M , 
( L  +  (
# `  B )
) >. ) ) )
114103, 113pm2.61d 170 1  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  M  e.  ( 0 ... ( L  +  ( # `  B
) ) ) )  /\  ( L  +  ( # `  B ) )  <_  L )  ->  if ( L  <_  M ,  ( B substr  <.
( M  -  L
) ,  ( # `  B ) >. ) ,  ( ( A substr  <. M ,  L >. ) ++  B ) )  =  ( A substr  <. M , 
( L  +  (
# `  B )
) >. ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   (/)c0 3915   ifcif 4086   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    <_ cle 10075    - cmin 10266   NN0cn0 11292   ...cfz 12326   #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303
This theorem is referenced by:  swrdccat3b  13496
  Copyright terms: Public domain W3C validator