MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgredg Structured version   Visualization version   Unicode version

Theorem upgredg 26032
Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v  |-  V  =  (Vtx `  G )
upgredg.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
upgredg  |-  ( ( G  e. UPGraph  /\  C  e.  E )  ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
Distinct variable groups:    C, a,
b    G, a, b    V, a, b
Allowed substitution hints:    E( a, b)

Proof of Theorem upgredg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 upgredg.e . . . . . 6  |-  E  =  (Edg `  G )
2 edgval 25941 . . . . . . 7  |-  (Edg `  G )  =  ran  (iEdg `  G )
32a1i 11 . . . . . 6  |-  ( G  e. UPGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
41, 3syl5eq 2668 . . . . 5  |-  ( G  e. UPGraph  ->  E  =  ran  (iEdg `  G ) )
54eleq2d 2687 . . . 4  |-  ( G  e. UPGraph  ->  ( C  e.  E  <->  C  e.  ran  (iEdg `  G ) ) )
6 upgredg.v . . . . . . 7  |-  V  =  (Vtx `  G )
7 eqid 2622 . . . . . . 7  |-  (iEdg `  G )  =  (iEdg `  G )
86, 7upgrf 25981 . . . . . 6  |-  ( G  e. UPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
9 frn 6053 . . . . . 6  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 }  ->  ran  (iEdg `  G
)  C_  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
108, 9syl 17 . . . . 5  |-  ( G  e. UPGraph  ->  ran  (iEdg `  G
)  C_  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
1110sseld 3602 . . . 4  |-  ( G  e. UPGraph  ->  ( C  e. 
ran  (iEdg `  G )  ->  C  e.  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
125, 11sylbid 230 . . 3  |-  ( G  e. UPGraph  ->  ( C  e.  E  ->  C  e.  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } ) )
1312imp 445 . 2  |-  ( ( G  e. UPGraph  /\  C  e.  E )  ->  C  e.  { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } )
14 fveq2 6191 . . . . 5  |-  ( x  =  C  ->  ( # `
 x )  =  ( # `  C
) )
1514breq1d 4663 . . . 4  |-  ( x  =  C  ->  (
( # `  x )  <_  2  <->  ( # `  C
)  <_  2 ) )
1615elrab 3363 . . 3  |-  ( C  e.  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  <->  ( C  e.  ( ~P V  \  { (/) } )  /\  ( # `  C )  <_  2
) )
17 hashle2prv 13260 . . . 4  |-  ( C  e.  ( ~P V  \  { (/) } )  -> 
( ( # `  C
)  <_  2  <->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } ) )
1817biimpa 501 . . 3  |-  ( ( C  e.  ( ~P V  \  { (/) } )  /\  ( # `  C )  <_  2
)  ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
1916, 18sylbi 207 . 2  |-  ( C  e.  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
2013, 19syl 17 1  |-  ( ( G  e. UPGraph  /\  C  e.  E )  ->  E. a  e.  V  E. b  e.  V  C  =  { a ,  b } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   class class class wbr 4653   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977
This theorem is referenced by:  upgrpredgv  26034  upgredg2vtx  26036  upgredgpr  26037  edglnl  26038  numedglnl  26039
  Copyright terms: Public domain W3C validator