MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzennn Structured version   Visualization version   Unicode version

Theorem fzennn 12767
Description: The cardinality of a finite set of sequential integers. (See om2uz0i 12746 for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013.) (Revised by Mario Carneiro, 7-Mar-2014.)
Hypothesis
Ref Expression
fzennn.1  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
Assertion
Ref Expression
fzennn  |-  ( N  e.  NN0  ->  ( 1 ... N )  ~~  ( `' G `  N ) )

Proof of Theorem fzennn
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . 3  |-  ( n  =  0  ->  (
1 ... n )  =  ( 1 ... 0
) )
2 fveq2 6191 . . 3  |-  ( n  =  0  ->  ( `' G `  n )  =  ( `' G `  0 ) )
31, 2breq12d 4666 . 2  |-  ( n  =  0  ->  (
( 1 ... n
)  ~~  ( `' G `  n )  <->  ( 1 ... 0 ) 
~~  ( `' G `  0 ) ) )
4 oveq2 6658 . . 3  |-  ( n  =  m  ->  (
1 ... n )  =  ( 1 ... m
) )
5 fveq2 6191 . . 3  |-  ( n  =  m  ->  ( `' G `  n )  =  ( `' G `  m ) )
64, 5breq12d 4666 . 2  |-  ( n  =  m  ->  (
( 1 ... n
)  ~~  ( `' G `  n )  <->  ( 1 ... m ) 
~~  ( `' G `  m ) ) )
7 oveq2 6658 . . 3  |-  ( n  =  ( m  + 
1 )  ->  (
1 ... n )  =  ( 1 ... (
m  +  1 ) ) )
8 fveq2 6191 . . 3  |-  ( n  =  ( m  + 
1 )  ->  ( `' G `  n )  =  ( `' G `  ( m  +  1 ) ) )
97, 8breq12d 4666 . 2  |-  ( n  =  ( m  + 
1 )  ->  (
( 1 ... n
)  ~~  ( `' G `  n )  <->  ( 1 ... ( m  +  1 ) ) 
~~  ( `' G `  ( m  +  1 ) ) ) )
10 oveq2 6658 . . 3  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
11 fveq2 6191 . . 3  |-  ( n  =  N  ->  ( `' G `  n )  =  ( `' G `  N ) )
1210, 11breq12d 4666 . 2  |-  ( n  =  N  ->  (
( 1 ... n
)  ~~  ( `' G `  n )  <->  ( 1 ... N ) 
~~  ( `' G `  N ) ) )
13 0ex 4790 . . . 4  |-  (/)  e.  _V
1413enref 7988 . . 3  |-  (/)  ~~  (/)
15 fz10 12362 . . 3  |-  ( 1 ... 0 )  =  (/)
16 0z 11388 . . . . . 6  |-  0  e.  ZZ
17 fzennn.1 . . . . . 6  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
1816, 17om2uzf1oi 12752 . . . . 5  |-  G : om
-1-1-onto-> ( ZZ>= `  0 )
19 peano1 7085 . . . . 5  |-  (/)  e.  om
2018, 19pm3.2i 471 . . . 4  |-  ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  (/)  e.  om )
2116, 17om2uz0i 12746 . . . 4  |-  ( G `
 (/) )  =  0
22 f1ocnvfv 6534 . . . 4  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  (/)  e.  om )  ->  ( ( G `  (/) )  =  0  -> 
( `' G ` 
0 )  =  (/) ) )
2320, 21, 22mp2 9 . . 3  |-  ( `' G `  0 )  =  (/)
2414, 15, 233brtr4i 4683 . 2  |-  ( 1 ... 0 )  ~~  ( `' G `  0 )
25 simpr 477 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( 1 ... m )  ~~  ( `' G `  m ) )
26 ovex 6678 . . . . . . 7  |-  ( m  +  1 )  e. 
_V
27 fvex 6201 . . . . . . 7  |-  ( `' G `  m )  e.  _V
28 en2sn 8037 . . . . . . 7  |-  ( ( ( m  +  1 )  e.  _V  /\  ( `' G `  m )  e.  _V )  ->  { ( m  + 
1 ) }  ~~  { ( `' G `  m ) } )
2926, 27, 28mp2an 708 . . . . . 6  |-  { ( m  +  1 ) }  ~~  { ( `' G `  m ) }
3029a1i 11 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  { (
m  +  1 ) }  ~~  { ( `' G `  m ) } )
31 fzp1disj 12399 . . . . . 6  |-  ( ( 1 ... m )  i^i  { ( m  +  1 ) } )  =  (/)
3231a1i 11 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( (
1 ... m )  i^i 
{ ( m  + 
1 ) } )  =  (/) )
33 f1ocnvdm 6540 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  m  e.  ( ZZ>=
`  0 ) )  ->  ( `' G `  m )  e.  om )
3418, 33mpan 706 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  0
)  ->  ( `' G `  m )  e.  om )
35 nn0uz 11722 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
3634, 35eleq2s 2719 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( `' G `  m )  e.  om )
37 nnord 7073 . . . . . . . 8  |-  ( ( `' G `  m )  e.  om  ->  Ord  ( `' G `  m ) )
38 ordirr 5741 . . . . . . . 8  |-  ( Ord  ( `' G `  m )  ->  -.  ( `' G `  m )  e.  ( `' G `  m ) )
3936, 37, 383syl 18 . . . . . . 7  |-  ( m  e.  NN0  ->  -.  ( `' G `  m )  e.  ( `' G `  m ) )
4039adantr 481 . . . . . 6  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  -.  ( `' G `  m )  e.  ( `' G `  m ) )
41 disjsn 4246 . . . . . 6  |-  ( ( ( `' G `  m )  i^i  {
( `' G `  m ) } )  =  (/)  <->  -.  ( `' G `  m )  e.  ( `' G `  m ) )
4240, 41sylibr 224 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( ( `' G `  m )  i^i  { ( `' G `  m ) } )  =  (/) )
43 unen 8040 . . . . 5  |-  ( ( ( ( 1 ... m )  ~~  ( `' G `  m )  /\  { ( m  +  1 ) } 
~~  { ( `' G `  m ) } )  /\  (
( ( 1 ... m )  i^i  {
( m  +  1 ) } )  =  (/)  /\  ( ( `' G `  m )  i^i  { ( `' G `  m ) } )  =  (/) ) )  ->  (
( 1 ... m
)  u.  { ( m  +  1 ) } )  ~~  (
( `' G `  m )  u.  {
( `' G `  m ) } ) )
4425, 30, 32, 42, 43syl22anc 1327 . . . 4  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( (
1 ... m )  u. 
{ ( m  + 
1 ) } ) 
~~  ( ( `' G `  m )  u.  { ( `' G `  m ) } ) )
45 1z 11407 . . . . . 6  |-  1  e.  ZZ
46 1m1e0 11089 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
4746fveq2i 6194 . . . . . . . . 9  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
4835, 47eqtr4i 2647 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
4948eleq2i 2693 . . . . . . 7  |-  ( m  e.  NN0  <->  m  e.  ( ZZ>=
`  ( 1  -  1 ) ) )
5049biimpi 206 . . . . . 6  |-  ( m  e.  NN0  ->  m  e.  ( ZZ>= `  ( 1  -  1 ) ) )
51 fzsuc2 12398 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  m  e.  ( ZZ>= `  ( 1  -  1 ) ) )  -> 
( 1 ... (
m  +  1 ) )  =  ( ( 1 ... m )  u.  { ( m  +  1 ) } ) )
5245, 50, 51sylancr 695 . . . . 5  |-  ( m  e.  NN0  ->  ( 1 ... ( m  + 
1 ) )  =  ( ( 1 ... m )  u.  {
( m  +  1 ) } ) )
5352adantr 481 . . . 4  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( 1 ... ( m  + 
1 ) )  =  ( ( 1 ... m )  u.  {
( m  +  1 ) } ) )
54 peano2 7086 . . . . . . . . 9  |-  ( ( `' G `  m )  e.  om  ->  suc  ( `' G `  m )  e.  om )
5536, 54syl 17 . . . . . . . 8  |-  ( m  e.  NN0  ->  suc  ( `' G `  m )  e.  om )
5655, 18jctil 560 . . . . . . 7  |-  ( m  e.  NN0  ->  ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  suc  ( `' G `  m )  e.  om ) )
5716, 17om2uzsuci 12747 . . . . . . . . 9  |-  ( ( `' G `  m )  e.  om  ->  ( G `  suc  ( `' G `  m ) )  =  ( ( G `  ( `' G `  m ) )  +  1 ) )
5836, 57syl 17 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( G `
 suc  ( `' G `  m )
)  =  ( ( G `  ( `' G `  m ) )  +  1 ) )
5935eleq2i 2693 . . . . . . . . . . 11  |-  ( m  e.  NN0  <->  m  e.  ( ZZ>=
`  0 ) )
6059biimpi 206 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  m  e.  ( ZZ>= `  0 )
)
61 f1ocnvfv2 6533 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  m  e.  ( ZZ>=
`  0 ) )  ->  ( G `  ( `' G `  m ) )  =  m )
6218, 60, 61sylancr 695 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( G `
 ( `' G `  m ) )  =  m )
6362oveq1d 6665 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( ( G `  ( `' G `  m ) )  +  1 )  =  ( m  + 
1 ) )
6458, 63eqtrd 2656 . . . . . . 7  |-  ( m  e.  NN0  ->  ( G `
 suc  ( `' G `  m )
)  =  ( m  +  1 ) )
65 f1ocnvfv 6534 . . . . . . 7  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  0 )  /\  suc  ( `' G `  m )  e.  om )  ->  ( ( G `
 suc  ( `' G `  m )
)  =  ( m  +  1 )  -> 
( `' G `  ( m  +  1
) )  =  suc  ( `' G `  m ) ) )
6656, 64, 65sylc 65 . . . . . 6  |-  ( m  e.  NN0  ->  ( `' G `  ( m  +  1 ) )  =  suc  ( `' G `  m ) )
6766adantr 481 . . . . 5  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( `' G `  ( m  +  1 ) )  =  suc  ( `' G `  m ) )
68 df-suc 5729 . . . . 5  |-  suc  ( `' G `  m )  =  ( ( `' G `  m )  u.  { ( `' G `  m ) } )
6967, 68syl6eq 2672 . . . 4  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( `' G `  ( m  +  1 ) )  =  ( ( `' G `  m )  u.  { ( `' G `  m ) } ) )
7044, 53, 693brtr4d 4685 . . 3  |-  ( ( m  e.  NN0  /\  ( 1 ... m
)  ~~  ( `' G `  m )
)  ->  ( 1 ... ( m  + 
1 ) )  ~~  ( `' G `  ( m  +  1 ) ) )
7170ex 450 . 2  |-  ( m  e.  NN0  ->  ( ( 1 ... m ) 
~~  ( `' G `  m )  ->  (
1 ... ( m  + 
1 ) )  ~~  ( `' G `  ( m  +  1 ) ) ) )
723, 6, 9, 12, 24, 71nn0ind 11472 1  |-  ( N  e.  NN0  ->  ( 1 ... N )  ~~  ( `' G `  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113    |` cres 5116   Ord word 5722   suc csuc 5725   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   omcom 7065   reccrdg 7505    ~~ cen 7952   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  fzen2  12768  cardfz  12769
  Copyright terms: Public domain W3C validator