| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzennn | Structured version Visualization version Unicode version | ||
| Description: The cardinality of a finite set of sequential integers. (See om2uz0i 12746 for a description of the hypothesis.) (Contributed by Mario Carneiro, 12-Feb-2013.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| Ref | Expression |
|---|---|
| fzennn.1 |
|
| Ref | Expression |
|---|---|
| fzennn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6658 |
. . 3
| |
| 2 | fveq2 6191 |
. . 3
| |
| 3 | 1, 2 | breq12d 4666 |
. 2
|
| 4 | oveq2 6658 |
. . 3
| |
| 5 | fveq2 6191 |
. . 3
| |
| 6 | 4, 5 | breq12d 4666 |
. 2
|
| 7 | oveq2 6658 |
. . 3
| |
| 8 | fveq2 6191 |
. . 3
| |
| 9 | 7, 8 | breq12d 4666 |
. 2
|
| 10 | oveq2 6658 |
. . 3
| |
| 11 | fveq2 6191 |
. . 3
| |
| 12 | 10, 11 | breq12d 4666 |
. 2
|
| 13 | 0ex 4790 |
. . . 4
| |
| 14 | 13 | enref 7988 |
. . 3
|
| 15 | fz10 12362 |
. . 3
| |
| 16 | 0z 11388 |
. . . . . 6
| |
| 17 | fzennn.1 |
. . . . . 6
| |
| 18 | 16, 17 | om2uzf1oi 12752 |
. . . . 5
|
| 19 | peano1 7085 |
. . . . 5
| |
| 20 | 18, 19 | pm3.2i 471 |
. . . 4
|
| 21 | 16, 17 | om2uz0i 12746 |
. . . 4
|
| 22 | f1ocnvfv 6534 |
. . . 4
| |
| 23 | 20, 21, 22 | mp2 9 |
. . 3
|
| 24 | 14, 15, 23 | 3brtr4i 4683 |
. 2
|
| 25 | simpr 477 |
. . . . 5
| |
| 26 | ovex 6678 |
. . . . . . 7
| |
| 27 | fvex 6201 |
. . . . . . 7
| |
| 28 | en2sn 8037 |
. . . . . . 7
| |
| 29 | 26, 27, 28 | mp2an 708 |
. . . . . 6
|
| 30 | 29 | a1i 11 |
. . . . 5
|
| 31 | fzp1disj 12399 |
. . . . . 6
| |
| 32 | 31 | a1i 11 |
. . . . 5
|
| 33 | f1ocnvdm 6540 |
. . . . . . . . . 10
| |
| 34 | 18, 33 | mpan 706 |
. . . . . . . . 9
|
| 35 | nn0uz 11722 |
. . . . . . . . 9
| |
| 36 | 34, 35 | eleq2s 2719 |
. . . . . . . 8
|
| 37 | nnord 7073 |
. . . . . . . 8
| |
| 38 | ordirr 5741 |
. . . . . . . 8
| |
| 39 | 36, 37, 38 | 3syl 18 |
. . . . . . 7
|
| 40 | 39 | adantr 481 |
. . . . . 6
|
| 41 | disjsn 4246 |
. . . . . 6
| |
| 42 | 40, 41 | sylibr 224 |
. . . . 5
|
| 43 | unen 8040 |
. . . . 5
| |
| 44 | 25, 30, 32, 42, 43 | syl22anc 1327 |
. . . 4
|
| 45 | 1z 11407 |
. . . . . 6
| |
| 46 | 1m1e0 11089 |
. . . . . . . . . 10
| |
| 47 | 46 | fveq2i 6194 |
. . . . . . . . 9
|
| 48 | 35, 47 | eqtr4i 2647 |
. . . . . . . 8
|
| 49 | 48 | eleq2i 2693 |
. . . . . . 7
|
| 50 | 49 | biimpi 206 |
. . . . . 6
|
| 51 | fzsuc2 12398 |
. . . . . 6
| |
| 52 | 45, 50, 51 | sylancr 695 |
. . . . 5
|
| 53 | 52 | adantr 481 |
. . . 4
|
| 54 | peano2 7086 |
. . . . . . . . 9
| |
| 55 | 36, 54 | syl 17 |
. . . . . . . 8
|
| 56 | 55, 18 | jctil 560 |
. . . . . . 7
|
| 57 | 16, 17 | om2uzsuci 12747 |
. . . . . . . . 9
|
| 58 | 36, 57 | syl 17 |
. . . . . . . 8
|
| 59 | 35 | eleq2i 2693 |
. . . . . . . . . . 11
|
| 60 | 59 | biimpi 206 |
. . . . . . . . . 10
|
| 61 | f1ocnvfv2 6533 |
. . . . . . . . . 10
| |
| 62 | 18, 60, 61 | sylancr 695 |
. . . . . . . . 9
|
| 63 | 62 | oveq1d 6665 |
. . . . . . . 8
|
| 64 | 58, 63 | eqtrd 2656 |
. . . . . . 7
|
| 65 | f1ocnvfv 6534 |
. . . . . . 7
| |
| 66 | 56, 64, 65 | sylc 65 |
. . . . . 6
|
| 67 | 66 | adantr 481 |
. . . . 5
|
| 68 | df-suc 5729 |
. . . . 5
| |
| 69 | 67, 68 | syl6eq 2672 |
. . . 4
|
| 70 | 44, 53, 69 | 3brtr4d 4685 |
. . 3
|
| 71 | 70 | ex 450 |
. 2
|
| 72 | 3, 6, 9, 12, 24, 71 | nn0ind 11472 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 |
| This theorem is referenced by: fzen2 12768 cardfz 12769 |
| Copyright terms: Public domain | W3C validator |