MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwmc Structured version   Visualization version   Unicode version

Theorem vdwmc 15682
Description: The predicate " The  <. R ,  N >.-coloring  F contains a monochromatic AP of length 
K". (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwmc.1  |-  X  e. 
_V
vdwmc.2  |-  ( ph  ->  K  e.  NN0 )
vdwmc.3  |-  ( ph  ->  F : X --> R )
Assertion
Ref Expression
vdwmc  |-  ( ph  ->  ( K MonoAP  F  <->  E. c E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' F " { c } ) ) )
Distinct variable groups:    a, c,
d, F    K, a,
c, d    ph, c
Allowed substitution hints:    ph( a, d)    R( a, c, d)    X( a, c, d)

Proof of Theorem vdwmc
Dummy variables  f 
k  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwmc.2 . . 3  |-  ( ph  ->  K  e.  NN0 )
2 vdwmc.3 . . . 4  |-  ( ph  ->  F : X --> R )
3 vdwmc.1 . . . 4  |-  X  e. 
_V
4 fex 6490 . . . 4  |-  ( ( F : X --> R  /\  X  e.  _V )  ->  F  e.  _V )
52, 3, 4sylancl 694 . . 3  |-  ( ph  ->  F  e.  _V )
6 fveq2 6191 . . . . . . . 8  |-  ( k  =  K  ->  (AP `  k )  =  (AP
`  K ) )
76rneqd 5353 . . . . . . 7  |-  ( k  =  K  ->  ran  (AP `  k )  =  ran  (AP `  K
) )
8 cnveq 5296 . . . . . . . . 9  |-  ( f  =  F  ->  `' f  =  `' F
)
98imaeq1d 5465 . . . . . . . 8  |-  ( f  =  F  ->  ( `' f " {
c } )  =  ( `' F " { c } ) )
109pweqd 4163 . . . . . . 7  |-  ( f  =  F  ->  ~P ( `' f " {
c } )  =  ~P ( `' F " { c } ) )
117, 10ineqan12d 3816 . . . . . 6  |-  ( ( k  =  K  /\  f  =  F )  ->  ( ran  (AP `  k )  i^i  ~P ( `' f " {
c } ) )  =  ( ran  (AP `  K )  i^i  ~P ( `' F " { c } ) ) )
1211neeq1d 2853 . . . . 5  |-  ( ( k  =  K  /\  f  =  F )  ->  ( ( ran  (AP `  k )  i^i  ~P ( `' f " {
c } ) )  =/=  (/)  <->  ( ran  (AP `  K )  i^i  ~P ( `' F " { c } ) )  =/=  (/) ) )
1312exbidv 1850 . . . 4  |-  ( ( k  =  K  /\  f  =  F )  ->  ( E. c ( ran  (AP `  k
)  i^i  ~P ( `' f " {
c } ) )  =/=  (/)  <->  E. c ( ran  (AP `  K )  i^i  ~P ( `' F " { c } ) )  =/=  (/) ) )
14 df-vdwmc 15673 . . . 4  |- MonoAP  =  { <. k ,  f >.  |  E. c ( ran  (AP `  k )  i^i  ~P ( `' f " { c } ) )  =/=  (/) }
1513, 14brabga 4989 . . 3  |-  ( ( K  e.  NN0  /\  F  e.  _V )  ->  ( K MonoAP  F  <->  E. c
( ran  (AP `  K
)  i^i  ~P ( `' F " { c } ) )  =/=  (/) ) )
161, 5, 15syl2anc 693 . 2  |-  ( ph  ->  ( K MonoAP  F  <->  E. c
( ran  (AP `  K
)  i^i  ~P ( `' F " { c } ) )  =/=  (/) ) )
17 vdwapf 15676 . . . . 5  |-  ( K  e.  NN0  ->  (AP `  K ) : ( NN  X.  NN ) --> ~P NN )
18 ffn 6045 . . . . 5  |-  ( (AP
`  K ) : ( NN  X.  NN )
--> ~P NN  ->  (AP `  K )  Fn  ( NN  X.  NN ) )
19 selpw 4165 . . . . . . 7  |-  ( z  e.  ~P ( `' F " { c } )  <->  z  C_  ( `' F " { c } ) )
20 sseq1 3626 . . . . . . 7  |-  ( z  =  ( (AP `  K ) `  w
)  ->  ( z  C_  ( `' F " { c } )  <-> 
( (AP `  K
) `  w )  C_  ( `' F " { c } ) ) )
2119, 20syl5bb 272 . . . . . 6  |-  ( z  =  ( (AP `  K ) `  w
)  ->  ( z  e.  ~P ( `' F " { c } )  <-> 
( (AP `  K
) `  w )  C_  ( `' F " { c } ) ) )
2221rexrn 6361 . . . . 5  |-  ( (AP
`  K )  Fn  ( NN  X.  NN )  ->  ( E. z  e.  ran  (AP `  K
) z  e.  ~P ( `' F " { c } )  <->  E. w  e.  ( NN  X.  NN ) ( (AP `  K ) `  w
)  C_  ( `' F " { c } ) ) )
231, 17, 18, 224syl 19 . . . 4  |-  ( ph  ->  ( E. z  e. 
ran  (AP `  K
) z  e.  ~P ( `' F " { c } )  <->  E. w  e.  ( NN  X.  NN ) ( (AP `  K ) `  w
)  C_  ( `' F " { c } ) ) )
24 elin 3796 . . . . . 6  |-  ( z  e.  ( ran  (AP `  K )  i^i  ~P ( `' F " { c } ) )  <->  ( z  e.  ran  (AP `  K
)  /\  z  e.  ~P ( `' F " { c } ) ) )
2524exbii 1774 . . . . 5  |-  ( E. z  z  e.  ( ran  (AP `  K
)  i^i  ~P ( `' F " { c } ) )  <->  E. z
( z  e.  ran  (AP `  K )  /\  z  e.  ~P ( `' F " { c } ) ) )
26 n0 3931 . . . . 5  |-  ( ( ran  (AP `  K
)  i^i  ~P ( `' F " { c } ) )  =/=  (/) 
<->  E. z  z  e.  ( ran  (AP `  K )  i^i  ~P ( `' F " { c } ) ) )
27 df-rex 2918 . . . . 5  |-  ( E. z  e.  ran  (AP `  K ) z  e. 
~P ( `' F " { c } )  <->  E. z ( z  e. 
ran  (AP `  K
)  /\  z  e.  ~P ( `' F " { c } ) ) )
2825, 26, 273bitr4ri 293 . . . 4  |-  ( E. z  e.  ran  (AP `  K ) z  e. 
~P ( `' F " { c } )  <-> 
( ran  (AP `  K
)  i^i  ~P ( `' F " { c } ) )  =/=  (/) )
29 fveq2 6191 . . . . . . 7  |-  ( w  =  <. a ,  d
>.  ->  ( (AP `  K ) `  w
)  =  ( (AP
`  K ) `  <. a ,  d >.
) )
30 df-ov 6653 . . . . . . 7  |-  ( a (AP `  K ) d )  =  ( (AP `  K ) `
 <. a ,  d
>. )
3129, 30syl6eqr 2674 . . . . . 6  |-  ( w  =  <. a ,  d
>.  ->  ( (AP `  K ) `  w
)  =  ( a (AP `  K ) d ) )
3231sseq1d 3632 . . . . 5  |-  ( w  =  <. a ,  d
>.  ->  ( ( (AP
`  K ) `  w )  C_  ( `' F " { c } )  <->  ( a
(AP `  K )
d )  C_  ( `' F " { c } ) ) )
3332rexxp 5264 . . . 4  |-  ( E. w  e.  ( NN 
X.  NN ) ( (AP `  K ) `
 w )  C_  ( `' F " { c } )  <->  E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' F " { c } ) )
3423, 28, 333bitr3g 302 . . 3  |-  ( ph  ->  ( ( ran  (AP `  K )  i^i  ~P ( `' F " { c } ) )  =/=  (/) 
<->  E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' F " { c } ) ) )
3534exbidv 1850 . 2  |-  ( ph  ->  ( E. c ( ran  (AP `  K
)  i^i  ~P ( `' F " { c } ) )  =/=  (/) 
<->  E. c E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' F " { c } ) ) )
3616, 35bitrd 268 1  |-  ( ph  ->  ( K MonoAP  F  <->  E. c E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' F " { c } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   NNcn 11020   NN0cn0 11292  APcvdwa 15669   MonoAP cvdwm 15670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-vdwap 15672  df-vdwmc 15673
This theorem is referenced by:  vdwmc2  15683  vdwlem1  15685  vdwlem2  15686  vdwlem9  15693  vdwlem10  15694  vdwlem12  15696  vdwlem13  15697
  Copyright terms: Public domain W3C validator