MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrd2f1tovbij Structured version   Visualization version   Unicode version

Theorem wrd2f1tovbij 13703
Description: There is a bijection between words of length two with a fixed first symbol contained in a pair and the symbols contained in a pair together with the fixed symbol. (Contributed by Alexander van der Vekens, 28-Jul-2018.)
Assertion
Ref Expression
wrd2f1tovbij  |-  ( ( V  e.  Y  /\  P  e.  V )  ->  E. f  f : { w  e. Word  V  |  ( ( # `  w )  =  2  /\  ( w ` 
0 )  =  P  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  X
) } -1-1-onto-> { n  e.  V  |  { P ,  n }  e.  X }
)
Distinct variable groups:    P, f, n, w    f, V, n, w    f, X, n, w
Allowed substitution hints:    Y( w, f, n)

Proof of Theorem wrd2f1tovbij
Dummy variables  p  t  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdexg 13315 . . . 4  |-  ( V  e.  Y  -> Word  V  e. 
_V )
21adantr 481 . . 3  |-  ( ( V  e.  Y  /\  P  e.  V )  -> Word  V  e.  _V )
3 rabexg 4812 . . 3  |-  (Word  V  e.  _V  ->  { t  e. Word  V  |  ( (
# `  t )  =  2  /\  (
t `  0 )  =  P  /\  { ( t `  0 ) ,  ( t ` 
1 ) }  e.  X ) }  e.  _V )
4 mptexg 6484 . . 3  |-  ( { t  e. Word  V  | 
( ( # `  t
)  =  2  /\  ( t `  0
)  =  P  /\  { ( t `  0
) ,  ( t `
 1 ) }  e.  X ) }  e.  _V  ->  (
x  e.  { t  e. Word  V  |  ( ( # `  t
)  =  2  /\  ( t `  0
)  =  P  /\  { ( t `  0
) ,  ( t `
 1 ) }  e.  X ) } 
|->  ( x `  1
) )  e.  _V )
52, 3, 43syl 18 . 2  |-  ( ( V  e.  Y  /\  P  e.  V )  ->  ( x  e.  {
t  e. Word  V  | 
( ( # `  t
)  =  2  /\  ( t `  0
)  =  P  /\  { ( t `  0
) ,  ( t `
 1 ) }  e.  X ) } 
|->  ( x `  1
) )  e.  _V )
6 fveq2 6191 . . . . . . 7  |-  ( w  =  u  ->  ( # `
 w )  =  ( # `  u
) )
76eqeq1d 2624 . . . . . 6  |-  ( w  =  u  ->  (
( # `  w )  =  2  <->  ( # `  u
)  =  2 ) )
8 fveq1 6190 . . . . . . 7  |-  ( w  =  u  ->  (
w `  0 )  =  ( u ` 
0 ) )
98eqeq1d 2624 . . . . . 6  |-  ( w  =  u  ->  (
( w `  0
)  =  P  <->  ( u `  0 )  =  P ) )
10 fveq1 6190 . . . . . . . 8  |-  ( w  =  u  ->  (
w `  1 )  =  ( u ` 
1 ) )
118, 10preq12d 4276 . . . . . . 7  |-  ( w  =  u  ->  { ( w `  0 ) ,  ( w ` 
1 ) }  =  { ( u ` 
0 ) ,  ( u `  1 ) } )
1211eleq1d 2686 . . . . . 6  |-  ( w  =  u  ->  ( { ( w ` 
0 ) ,  ( w `  1 ) }  e.  X  <->  { (
u `  0 ) ,  ( u ` 
1 ) }  e.  X ) )
137, 9, 123anbi123d 1399 . . . . 5  |-  ( w  =  u  ->  (
( ( # `  w
)  =  2  /\  ( w `  0
)  =  P  /\  { ( w `  0
) ,  ( w `
 1 ) }  e.  X )  <->  ( ( # `
 u )  =  2  /\  ( u `
 0 )  =  P  /\  { ( u `  0 ) ,  ( u ` 
1 ) }  e.  X ) ) )
1413cbvrabv 3199 . . . 4  |-  { w  e. Word  V  |  ( (
# `  w )  =  2  /\  (
w `  0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  X ) }  =  { u  e. Word  V  | 
( ( # `  u
)  =  2  /\  ( u `  0
)  =  P  /\  { ( u `  0
) ,  ( u `
 1 ) }  e.  X ) }
15 preq2 4269 . . . . . 6  |-  ( n  =  p  ->  { P ,  n }  =  { P ,  p }
)
1615eleq1d 2686 . . . . 5  |-  ( n  =  p  ->  ( { P ,  n }  e.  X  <->  { P ,  p }  e.  X )
)
1716cbvrabv 3199 . . . 4  |-  { n  e.  V  |  { P ,  n }  e.  X }  =  {
p  e.  V  |  { P ,  p }  e.  X }
18 fveq2 6191 . . . . . . . 8  |-  ( t  =  w  ->  ( # `
 t )  =  ( # `  w
) )
1918eqeq1d 2624 . . . . . . 7  |-  ( t  =  w  ->  (
( # `  t )  =  2  <->  ( # `  w
)  =  2 ) )
20 fveq1 6190 . . . . . . . 8  |-  ( t  =  w  ->  (
t `  0 )  =  ( w ` 
0 ) )
2120eqeq1d 2624 . . . . . . 7  |-  ( t  =  w  ->  (
( t `  0
)  =  P  <->  ( w `  0 )  =  P ) )
22 fveq1 6190 . . . . . . . . 9  |-  ( t  =  w  ->  (
t `  1 )  =  ( w ` 
1 ) )
2320, 22preq12d 4276 . . . . . . . 8  |-  ( t  =  w  ->  { ( t `  0 ) ,  ( t ` 
1 ) }  =  { ( w ` 
0 ) ,  ( w `  1 ) } )
2423eleq1d 2686 . . . . . . 7  |-  ( t  =  w  ->  ( { ( t ` 
0 ) ,  ( t `  1 ) }  e.  X  <->  { (
w `  0 ) ,  ( w ` 
1 ) }  e.  X ) )
2519, 21, 243anbi123d 1399 . . . . . 6  |-  ( t  =  w  ->  (
( ( # `  t
)  =  2  /\  ( t `  0
)  =  P  /\  { ( t `  0
) ,  ( t `
 1 ) }  e.  X )  <->  ( ( # `
 w )  =  2  /\  ( w `
 0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  X ) ) )
2625cbvrabv 3199 . . . . 5  |-  { t  e. Word  V  |  ( ( # `  t
)  =  2  /\  ( t `  0
)  =  P  /\  { ( t `  0
) ,  ( t `
 1 ) }  e.  X ) }  =  { w  e. Word  V  |  ( ( # `
 w )  =  2  /\  ( w `
 0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  X ) }
27 mpteq1 4737 . . . . 5  |-  ( { t  e. Word  V  | 
( ( # `  t
)  =  2  /\  ( t `  0
)  =  P  /\  { ( t `  0
) ,  ( t `
 1 ) }  e.  X ) }  =  { w  e. Word  V  |  ( ( # `
 w )  =  2  /\  ( w `
 0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  X ) }  ->  ( x  e.  { t  e. Word  V  |  ( ( # `  t
)  =  2  /\  ( t `  0
)  =  P  /\  { ( t `  0
) ,  ( t `
 1 ) }  e.  X ) } 
|->  ( x `  1
) )  =  ( x  e.  { w  e. Word  V  |  ( (
# `  w )  =  2  /\  (
w `  0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  X ) }  |->  ( x `  1 ) ) )
2826, 27ax-mp 5 . . . 4  |-  ( x  e.  { t  e. Word  V  |  ( ( # `
 t )  =  2  /\  ( t `
 0 )  =  P  /\  { ( t `  0 ) ,  ( t ` 
1 ) }  e.  X ) }  |->  ( x `  1 ) )  =  ( x  e.  { w  e. Word  V  |  ( ( # `
 w )  =  2  /\  ( w `
 0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  X ) }  |->  ( x `  1 ) )
2914, 17, 28wwlktovf1o 13702 . . 3  |-  ( P  e.  V  ->  (
x  e.  { t  e. Word  V  |  ( ( # `  t
)  =  2  /\  ( t `  0
)  =  P  /\  { ( t `  0
) ,  ( t `
 1 ) }  e.  X ) } 
|->  ( x `  1
) ) : {
w  e. Word  V  | 
( ( # `  w
)  =  2  /\  ( w `  0
)  =  P  /\  { ( w `  0
) ,  ( w `
 1 ) }  e.  X ) } -1-1-onto-> { n  e.  V  |  { P ,  n }  e.  X } )
3029adantl 482 . 2  |-  ( ( V  e.  Y  /\  P  e.  V )  ->  ( x  e.  {
t  e. Word  V  | 
( ( # `  t
)  =  2  /\  ( t `  0
)  =  P  /\  { ( t `  0
) ,  ( t `
 1 ) }  e.  X ) } 
|->  ( x `  1
) ) : {
w  e. Word  V  | 
( ( # `  w
)  =  2  /\  ( w `  0
)  =  P  /\  { ( w `  0
) ,  ( w `
 1 ) }  e.  X ) } -1-1-onto-> { n  e.  V  |  { P ,  n }  e.  X } )
31 f1oeq1 6127 . . 3  |-  ( f  =  ( x  e. 
{ t  e. Word  V  |  ( ( # `  t )  =  2  /\  ( t ` 
0 )  =  P  /\  { ( t `
 0 ) ,  ( t `  1
) }  e.  X
) }  |->  ( x `
 1 ) )  ->  ( f : { w  e. Word  V  |  ( ( # `  w )  =  2  /\  ( w ` 
0 )  =  P  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  X
) } -1-1-onto-> { n  e.  V  |  { P ,  n }  e.  X }  <->  ( x  e.  { t  e. Word  V  |  ( ( # `  t
)  =  2  /\  ( t `  0
)  =  P  /\  { ( t `  0
) ,  ( t `
 1 ) }  e.  X ) } 
|->  ( x `  1
) ) : {
w  e. Word  V  | 
( ( # `  w
)  =  2  /\  ( w `  0
)  =  P  /\  { ( w `  0
) ,  ( w `
 1 ) }  e.  X ) } -1-1-onto-> { n  e.  V  |  { P ,  n }  e.  X } ) )
3231spcegv 3294 . 2  |-  ( ( x  e.  { t  e. Word  V  |  ( ( # `  t
)  =  2  /\  ( t `  0
)  =  P  /\  { ( t `  0
) ,  ( t `
 1 ) }  e.  X ) } 
|->  ( x `  1
) )  e.  _V  ->  ( ( x  e. 
{ t  e. Word  V  |  ( ( # `  t )  =  2  /\  ( t ` 
0 )  =  P  /\  { ( t `
 0 ) ,  ( t `  1
) }  e.  X
) }  |->  ( x `
 1 ) ) : { w  e. Word  V  |  ( ( # `
 w )  =  2  /\  ( w `
 0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  X ) } -1-1-onto-> { n  e.  V  |  { P ,  n }  e.  X }  ->  E. f  f : { w  e. Word  V  |  ( ( # `  w )  =  2  /\  ( w ` 
0 )  =  P  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  X
) } -1-1-onto-> { n  e.  V  |  { P ,  n }  e.  X }
) )
335, 30, 32sylc 65 1  |-  ( ( V  e.  Y  /\  P  e.  V )  ->  E. f  f : { w  e. Word  V  |  ( ( # `  w )  =  2  /\  ( w ` 
0 )  =  P  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  X
) } -1-1-onto-> { n  e.  V  |  { P ,  n }  e.  X }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {crab 2916   _Vcvv 3200   {cpr 4179    |-> cmpt 4729   -1-1-onto->wf1o 5887   ` cfv 5888   0cc0 9936   1c1 9937   2c2 11070   #chash 13117  Word cword 13291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299
This theorem is referenced by:  rusgrnumwrdl2  26482
  Copyright terms: Public domain W3C validator