MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextbi Structured version   Visualization version   Unicode version

Theorem wwlksnextbi 26789
Description: Extension of a walk (as word) by adding an edge/vertex. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 16-Apr-2021.)
Hypotheses
Ref Expression
wwlksnext.v  |-  V  =  (Vtx `  G )
wwlksnext.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
wwlksnextbi  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )
)  ->  ( W  e.  ( ( N  + 
1 ) WWalksN  G )  <->  T  e.  ( N WWalksN  G
) ) )

Proof of Theorem wwlksnextbi
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 wwlksnext.v . . . . 5  |-  V  =  (Vtx `  G )
2 wwlksnext.e . . . . 5  |-  E  =  (Edg `  G )
31, 2wwlknp 26734 . . . 4  |-  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  ( W  e. Word  V  /\  ( # `  W )  =  ( ( N  +  1 )  +  1 )  /\  A. i  e.  ( 0..^ ( N  +  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E ) )
4 wwlksnred 26787 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  ( W substr  <.
0 ,  ( N  +  1 ) >.
)  e.  ( N WWalksN  G ) ) )
54ad2antrr 762 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )
)  ->  ( W  e.  ( ( N  + 
1 ) WWalksN  G )  ->  ( W substr  <. 0 ,  ( N  + 
1 ) >. )  e.  ( N WWalksN  G )
) )
6 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( W  =  ( T ++  <" S "> )  ->  ( # `  W
)  =  ( # `  ( T ++  <" S "> ) ) )
76eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( W  =  ( T ++  <" S "> )  ->  ( ( # `  W
)  =  ( ( N  +  1 )  +  1 )  <->  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) )
873ad2ant2 1083 . . . . . . . . . . . . . . 15  |-  ( ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T
) ,  S }  e.  E )  ->  (
( # `  W )  =  ( ( N  +  1 )  +  1 )  <->  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) )
98adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )
)  ->  ( ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  <->  ( # `  ( T ++  <" S "> ) )  =  ( ( N  +  1 )  +  1 ) ) )
10 s1cl 13382 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S  e.  V  ->  <" S ">  e. Word  V )
1110adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN0  /\  S  e.  V )  ->  <" S ">  e. Word  V )
1211anim2i 593 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( T  e. Word  V  /\  ( N  e.  NN0  /\  S  e.  V ) )  ->  ( T  e. Word  V  /\  <" S ">  e. Word  V )
)
1312ancoms 469 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( T  e. Word  V  /\  <" S ">  e. Word  V )
)
14 ccatlen 13360 . . . . . . . . . . . . . . . . . . 19  |-  ( ( T  e. Word  V  /\  <" S ">  e. Word  V )  ->  ( # `
 ( T ++  <" S "> )
)  =  ( (
# `  T )  +  ( # `  <" S "> )
) )
1513, 14syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( # `  ( T ++  <" S "> ) )  =  ( ( # `  T
)  +  ( # `  <" S "> ) ) )
1615eqeq1d 2624 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( ( # `
 ( T ++  <" S "> )
)  =  ( ( N  +  1 )  +  1 )  <->  ( ( # `
 T )  +  ( # `  <" S "> )
)  =  ( ( N  +  1 )  +  1 ) ) )
17 s1len 13385 . . . . . . . . . . . . . . . . . . . 20  |-  ( # `  <" S "> )  =  1
1817a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( # `  <" S "> )  =  1 )
1918oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( ( # `
 T )  +  ( # `  <" S "> )
)  =  ( (
# `  T )  +  1 ) )
2019eqeq1d 2624 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( (
( # `  T )  +  ( # `  <" S "> )
)  =  ( ( N  +  1 )  +  1 )  <->  ( ( # `
 T )  +  1 )  =  ( ( N  +  1 )  +  1 ) ) )
21 lencl 13324 . . . . . . . . . . . . . . . . . . . 20  |-  ( T  e. Word  V  ->  ( # `
 T )  e. 
NN0 )
2221nn0cnd 11353 . . . . . . . . . . . . . . . . . . 19  |-  ( T  e. Word  V  ->  ( # `
 T )  e.  CC )
2322adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( # `  T
)  e.  CC )
24 peano2nn0 11333 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2524nn0cnd 11353 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
2625ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( N  +  1 )  e.  CC )
27 1cnd 10056 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  1  e.  CC )
2823, 26, 27addcan2d 10240 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( (
( # `  T )  +  1 )  =  ( ( N  + 
1 )  +  1 )  <->  ( # `  T
)  =  ( N  +  1 ) ) )
2916, 20, 283bitrd 294 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( ( # `
 ( T ++  <" S "> )
)  =  ( ( N  +  1 )  +  1 )  <->  ( # `  T
)  =  ( N  +  1 ) ) )
30 opeq2 4403 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  +  1 )  =  ( # `  T
)  ->  <. 0 ,  ( N  +  1 ) >.  =  <. 0 ,  ( # `  T
) >. )
3130eqcoms 2630 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  T )  =  ( N  + 
1 )  ->  <. 0 ,  ( N  + 
1 ) >.  =  <. 0 ,  ( # `  T
) >. )
3231oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  T )  =  ( N  + 
1 )  ->  (
( T ++  <" S "> ) substr  <. 0 ,  ( N  +  1 ) >. )  =  ( ( T ++  <" S "> ) substr  <. 0 ,  ( # `  T
) >. ) )
33 swrdccat1 13457 . . . . . . . . . . . . . . . . . . 19  |-  ( ( T  e. Word  V  /\  <" S ">  e. Word  V )  ->  (
( T ++  <" S "> ) substr  <. 0 ,  ( # `  T
) >. )  =  T )
3413, 33syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( ( T ++  <" S "> ) substr  <. 0 ,  ( # `  T
) >. )  =  T )
3532, 34sylan9eqr 2678 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  V )  /\  T  e. Word  V )  /\  ( # `
 T )  =  ( N  +  1 ) )  ->  (
( T ++  <" S "> ) substr  <. 0 ,  ( N  +  1 ) >. )  =  T )
3635ex 450 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( ( # `
 T )  =  ( N  +  1 )  ->  ( ( T ++  <" S "> ) substr  <. 0 ,  ( N  +  1 ) >. )  =  T ) )
3729, 36sylbid 230 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  T  e. Word  V
)  ->  ( ( # `
 ( T ++  <" S "> )
)  =  ( ( N  +  1 )  +  1 )  -> 
( ( T ++  <" S "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  T ) )
38373ad2antr1 1226 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )
)  ->  ( ( # `
 ( T ++  <" S "> )
)  =  ( ( N  +  1 )  +  1 )  -> 
( ( T ++  <" S "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  T ) )
399, 38sylbid 230 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )
)  ->  ( ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  ->  ( ( T ++  <" S "> ) substr  <. 0 ,  ( N  +  1 ) >. )  =  T ) )
4039imp 445 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T
) ,  S }  e.  E ) )  /\  ( # `  W )  =  ( ( N  +  1 )  +  1 ) )  -> 
( ( T ++  <" S "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  T )
41 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( W  =  ( T ++  <" S "> )  ->  ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  ( ( T ++ 
<" S "> ) substr  <. 0 ,  ( N  +  1 )
>. ) )
4241eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( W  =  ( T ++  <" S "> )  ->  ( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  T  <->  ( ( T ++ 
<" S "> ) substr  <. 0 ,  ( N  +  1 )
>. )  =  T
) )
43423ad2ant2 1083 . . . . . . . . . . . . 13  |-  ( ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T
) ,  S }  e.  E )  ->  (
( W substr  <. 0 ,  ( N  +  1 ) >. )  =  T  <-> 
( ( T ++  <" S "> ) substr  <.
0 ,  ( N  +  1 ) >.
)  =  T ) )
4443ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T
) ,  S }  e.  E ) )  /\  ( # `  W )  =  ( ( N  +  1 )  +  1 ) )  -> 
( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  =  T  <->  ( ( T ++ 
<" S "> ) substr  <. 0 ,  ( N  +  1 )
>. )  =  T
) )
4540, 44mpbird 247 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T
) ,  S }  e.  E ) )  /\  ( # `  W )  =  ( ( N  +  1 )  +  1 ) )  -> 
( W substr  <. 0 ,  ( N  +  1 ) >. )  =  T )
4645eleq1d 2686 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T
) ,  S }  e.  E ) )  /\  ( # `  W )  =  ( ( N  +  1 )  +  1 ) )  -> 
( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  e.  ( N WWalksN  G )  <->  T  e.  ( N WWalksN  G
) ) )
4746biimpd 219 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T
) ,  S }  e.  E ) )  /\  ( # `  W )  =  ( ( N  +  1 )  +  1 ) )  -> 
( ( W substr  <. 0 ,  ( N  + 
1 ) >. )  e.  ( N WWalksN  G )  ->  T  e.  ( N WWalksN  G ) ) )
4847ex 450 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )
)  ->  ( ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  ->  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  ( N WWalksN  G )  ->  T  e.  ( N WWalksN  G )
) ) )
4948com23 86 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )
)  ->  ( ( W substr  <. 0 ,  ( N  +  1 )
>. )  e.  ( N WWalksN  G )  ->  (
( # `  W )  =  ( ( N  +  1 )  +  1 )  ->  T  e.  ( N WWalksN  G )
) ) )
505, 49syld 47 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )
)  ->  ( W  e.  ( ( N  + 
1 ) WWalksN  G )  ->  ( ( # `  W
)  =  ( ( N  +  1 )  +  1 )  ->  T  e.  ( N WWalksN  G ) ) ) )
5150com13 88 . . . . 5  |-  ( (
# `  W )  =  ( ( N  +  1 )  +  1 )  ->  ( W  e.  ( ( N  +  1 ) WWalksN  G )  ->  (
( ( N  e. 
NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T
) ,  S }  e.  E ) )  ->  T  e.  ( N WWalksN  G ) ) ) )
52513ad2ant2 1083 . . . 4  |-  ( ( W  e. Word  V  /\  ( # `  W )  =  ( ( N  +  1 )  +  1 )  /\  A. i  e.  ( 0..^ ( N  +  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E )  ->  ( W  e.  ( ( N  +  1 ) WWalksN  G )  ->  (
( ( N  e. 
NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T
) ,  S }  e.  E ) )  ->  T  e.  ( N WWalksN  G ) ) ) )
533, 52mpcom 38 . . 3  |-  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  ( (
( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )
)  ->  T  e.  ( N WWalksN  G ) ) )
5453com12 32 . 2  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )
)  ->  ( W  e.  ( ( N  + 
1 ) WWalksN  G )  ->  T  e.  ( N WWalksN  G ) ) )
551, 2wwlksnext 26788 . . . . . . . . . . 11  |-  ( ( T  e.  ( N WWalksN  G )  /\  S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  E )  ->  ( T ++  <" S "> )  e.  ( ( N  +  1 ) WWalksN  G ) )
56 eleq1 2689 . . . . . . . . . . 11  |-  ( W  =  ( T ++  <" S "> )  ->  ( W  e.  ( ( N  +  1 ) WWalksN  G )  <->  ( T ++  <" S "> )  e.  ( ( N  +  1 ) WWalksN  G ) ) )
5755, 56syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( T  e.  ( N WWalksN  G )  /\  S  e.  V  /\  { ( lastS  `  T ) ,  S }  e.  E )  ->  ( W  =  ( T ++  <" S "> )  ->  W  e.  ( ( N  + 
1 ) WWalksN  G )
) )
58573exp 1264 . . . . . . . . 9  |-  ( T  e.  ( N WWalksN  G
)  ->  ( S  e.  V  ->  ( { ( lastS  `  T ) ,  S }  e.  E  ->  ( W  =  ( T ++  <" S "> )  ->  W  e.  ( ( N  + 
1 ) WWalksN  G )
) ) ) )
5958com23 86 . . . . . . . 8  |-  ( T  e.  ( N WWalksN  G
)  ->  ( {
( lastS  `  T ) ,  S }  e.  E  ->  ( S  e.  V  ->  ( W  =  ( T ++  <" S "> )  ->  W  e.  ( ( N  + 
1 ) WWalksN  G )
) ) ) )
6059com14 96 . . . . . . 7  |-  ( W  =  ( T ++  <" S "> )  ->  ( { ( lastS  `  T
) ,  S }  e.  E  ->  ( S  e.  V  ->  ( T  e.  ( N WWalksN  G )  ->  W  e.  ( ( N  + 
1 ) WWalksN  G )
) ) ) )
6160imp 445 . . . . . 6  |-  ( ( W  =  ( T ++ 
<" S "> )  /\  { ( lastS  `  T
) ,  S }  e.  E )  ->  ( S  e.  V  ->  ( T  e.  ( N WWalksN  G )  ->  W  e.  ( ( N  + 
1 ) WWalksN  G )
) ) )
62613adant1 1079 . . . . 5  |-  ( ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T
) ,  S }  e.  E )  ->  ( S  e.  V  ->  ( T  e.  ( N WWalksN  G )  ->  W  e.  ( ( N  + 
1 ) WWalksN  G )
) ) )
6362com12 32 . . . 4  |-  ( S  e.  V  ->  (
( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )  ->  ( T  e.  ( N WWalksN  G )  ->  W  e.  ( ( N  + 
1 ) WWalksN  G )
) ) )
6463adantl 482 . . 3  |-  ( ( N  e.  NN0  /\  S  e.  V )  ->  ( ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )  ->  ( T  e.  ( N WWalksN  G )  ->  W  e.  ( ( N  + 
1 ) WWalksN  G )
) ) )
6564imp 445 . 2  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )
)  ->  ( T  e.  ( N WWalksN  G )  ->  W  e.  ( ( N  +  1 ) WWalksN  G ) ) )
6654, 65impbid 202 1  |-  ( ( ( N  e.  NN0  /\  S  e.  V )  /\  ( T  e. Word  V  /\  W  =  ( T ++  <" S "> )  /\  { ( lastS  `  T ) ,  S }  e.  E )
)  ->  ( W  e.  ( ( N  + 
1 ) WWalksN  G )  <->  T  e.  ( N WWalksN  G
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {cpr 4179   <.cop 4183   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  wwlksnextwrd  26792
  Copyright terms: Public domain W3C validator