MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2 Structured version   Visualization version   Unicode version

Theorem elwwlks2 26861
Description: A walk of length 2 between two vertices as length 3 string in a pseudograph. (Contributed by Alexander van der Vekens, 21-Feb-2018.) (Revised by AV, 17-May-2021.)
Hypothesis
Ref Expression
elwwlks2.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
elwwlks2  |-  ( G  e. UPGraph  ->  ( W  e.  ( 2 WWalksN  G )  <->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( W  =  <" a b c ">  /\  E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) ) ) ) )
Distinct variable groups:    G, a,
b, c, f, p    V, a, b, c, f, p    W, a, b, c, f, p

Proof of Theorem elwwlks2
StepHypRef Expression
1 2nn0 11309 . . 3  |-  2  e.  NN0
2 elwwlks2.v . . . 4  |-  V  =  (Vtx `  G )
32wwlksnwwlksnon 26810 . . 3  |-  ( ( 2  e.  NN0  /\  G  e. UPGraph  )  ->  ( W  e.  ( 2 WWalksN  G )  <->  E. a  e.  V  E. c  e.  V  W  e.  ( a ( 2 WWalksNOn  G ) c ) ) )
41, 3mpan 706 . 2  |-  ( G  e. UPGraph  ->  ( W  e.  ( 2 WWalksN  G )  <->  E. a  e.  V  E. c  e.  V  W  e.  ( a
( 2 WWalksNOn  G )
c ) ) )
52elwwlks2on 26852 . . . 4  |-  ( ( G  e. UPGraph  /\  a  e.  V  /\  c  e.  V )  ->  ( W  e.  ( a
( 2 WWalksNOn  G )
c )  <->  E. b  e.  V  ( W  =  <" a b c ">  /\  E. f ( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) ) ) )
653expb 1266 . . 3  |-  ( ( G  e. UPGraph  /\  (
a  e.  V  /\  c  e.  V )
)  ->  ( W  e.  ( a ( 2 WWalksNOn  G ) c )  <->  E. b  e.  V  ( W  =  <" a b c ">  /\  E. f
( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) ) ) )
762rexbidva 3056 . 2  |-  ( G  e. UPGraph  ->  ( E. a  e.  V  E. c  e.  V  W  e.  ( a ( 2 WWalksNOn  G ) c )  <->  E. a  e.  V  E. c  e.  V  E. b  e.  V  ( W  =  <" a b c ">  /\  E. f
( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) ) ) )
8 rexcom 3099 . . . 4  |-  ( E. c  e.  V  E. b  e.  V  ( W  =  <" a
b c ">  /\ 
E. f ( f (Walks `  G ) W  /\  ( # `  f
)  =  2 ) )  <->  E. b  e.  V  E. c  e.  V  ( W  =  <" a b c ">  /\  E. f
( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) ) )
9 s3cli 13626 . . . . . . . . . 10  |-  <" a
b c ">  e. Word  _V
109a1i 11 . . . . . . . . 9  |-  ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  ->  <" a b c ">  e. Word  _V )
11 simplr 792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  /\  p  =  <" a b c "> )  ->  W  =  <" a b c "> )
12 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  /\  p  =  <" a b c "> )  ->  p  =  <" a b c "> )
1311, 12eqtr4d 2659 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  /\  p  =  <" a b c "> )  ->  W  =  p )
1413breq2d 4665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  /\  p  =  <" a b c "> )  ->  (
f (Walks `  G
) W  <->  f (Walks `  G ) p ) )
1514biimpd 219 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  /\  p  =  <" a b c "> )  ->  (
f (Walks `  G
) W  ->  f
(Walks `  G )
p ) )
1615com12 32 . . . . . . . . . . . . 13  |-  ( f (Walks `  G ) W  ->  ( ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  /\  p  =  <" a b c "> )  ->  f
(Walks `  G )
p ) )
1716adantr 481 . . . . . . . . . . . 12  |-  ( ( f (Walks `  G
) W  /\  ( # `
 f )  =  2 )  ->  (
( ( ( ( G  e. UPGraph  /\  a  e.  V )  /\  (
b  e.  V  /\  c  e.  V )
)  /\  W  =  <" a b c "> )  /\  p  =  <" a
b c "> )  ->  f (Walks `  G ) p ) )
1817impcom 446 . . . . . . . . . . 11  |-  ( ( ( ( ( ( G  e. UPGraph  /\  a  e.  V )  /\  (
b  e.  V  /\  c  e.  V )
)  /\  W  =  <" a b c "> )  /\  p  =  <" a
b c "> )  /\  ( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) )  ->  f (Walks `  G ) p )
19 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ( ( ( G  e. UPGraph  /\  a  e.  V )  /\  (
b  e.  V  /\  c  e.  V )
)  /\  W  =  <" a b c "> )  /\  p  =  <" a
b c "> )  /\  ( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) )  ->  ( # `  f
)  =  2 )
20 vex 3203 . . . . . . . . . . . . . . . 16  |-  a  e. 
_V
21 s3fv0 13636 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  _V  ->  ( <" a b c "> `  0
)  =  a )
2221eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( a  e.  _V  ->  a  =  ( <" a
b c "> `  0 ) )
2320, 22mp1i 13 . . . . . . . . . . . . . . 15  |-  ( p  =  <" a b c ">  ->  a  =  ( <" a
b c "> `  0 ) )
24 fveq1 6190 . . . . . . . . . . . . . . 15  |-  ( p  =  <" a b c ">  ->  ( p `  0 )  =  ( <" a
b c "> `  0 ) )
2523, 24eqtr4d 2659 . . . . . . . . . . . . . 14  |-  ( p  =  <" a b c ">  ->  a  =  ( p ` 
0 ) )
26 vex 3203 . . . . . . . . . . . . . . . 16  |-  b  e. 
_V
27 s3fv1 13637 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  _V  ->  ( <" a b c "> `  1
)  =  b )
2827eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( b  e.  _V  ->  b  =  ( <" a
b c "> `  1 ) )
2926, 28mp1i 13 . . . . . . . . . . . . . . 15  |-  ( p  =  <" a b c ">  ->  b  =  ( <" a
b c "> `  1 ) )
30 fveq1 6190 . . . . . . . . . . . . . . 15  |-  ( p  =  <" a b c ">  ->  ( p `  1 )  =  ( <" a
b c "> `  1 ) )
3129, 30eqtr4d 2659 . . . . . . . . . . . . . 14  |-  ( p  =  <" a b c ">  ->  b  =  ( p ` 
1 ) )
32 vex 3203 . . . . . . . . . . . . . . . 16  |-  c  e. 
_V
33 s3fv2 13638 . . . . . . . . . . . . . . . . 17  |-  ( c  e.  _V  ->  ( <" a b c "> `  2
)  =  c )
3433eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( c  e.  _V  ->  c  =  ( <" a
b c "> `  2 ) )
3532, 34mp1i 13 . . . . . . . . . . . . . . 15  |-  ( p  =  <" a b c ">  ->  c  =  ( <" a
b c "> `  2 ) )
36 fveq1 6190 . . . . . . . . . . . . . . 15  |-  ( p  =  <" a b c ">  ->  ( p `  2 )  =  ( <" a
b c "> `  2 ) )
3735, 36eqtr4d 2659 . . . . . . . . . . . . . 14  |-  ( p  =  <" a b c ">  ->  c  =  ( p ` 
2 ) )
3825, 31, 373jca 1242 . . . . . . . . . . . . 13  |-  ( p  =  <" a b c ">  ->  ( a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )
3938adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  /\  p  =  <" a b c "> )  ->  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )
4039adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ( ( G  e. UPGraph  /\  a  e.  V )  /\  (
b  e.  V  /\  c  e.  V )
)  /\  W  =  <" a b c "> )  /\  p  =  <" a
b c "> )  /\  ( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) )  ->  ( a  =  ( p `  0
)  /\  b  =  ( p `  1
)  /\  c  =  ( p `  2
) ) )
4118, 19, 403jca 1242 . . . . . . . . . 10  |-  ( ( ( ( ( ( G  e. UPGraph  /\  a  e.  V )  /\  (
b  e.  V  /\  c  e.  V )
)  /\  W  =  <" a b c "> )  /\  p  =  <" a
b c "> )  /\  ( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) )  ->  ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) ) )
4241ex 450 . . . . . . . . 9  |-  ( ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  /\  p  =  <" a b c "> )  ->  (
( f (Walks `  G ) W  /\  ( # `  f )  =  2 )  -> 
( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) ) ) )
4310, 42spcimedv 3292 . . . . . . . 8  |-  ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  ->  ( ( f (Walks `  G ) W  /\  ( # `  f
)  =  2 )  ->  E. p ( f (Walks `  G )
p  /\  ( # `  f
)  =  2  /\  ( a  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) ) ) )
44 wlklenvp1 26514 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f (Walks `  G )
p  ->  ( # `  p
)  =  ( (
# `  f )  +  1 ) )
45 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( # `  p
)  =  ( (
# `  f )  +  1 )  /\  ( # `  f )  =  2 )  -> 
( # `  p )  =  ( ( # `  f )  +  1 ) )
46 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
# `  f )  =  2  ->  (
( # `  f )  +  1 )  =  ( 2  +  1 ) )
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( # `  p
)  =  ( (
# `  f )  +  1 )  /\  ( # `  f )  =  2 )  -> 
( ( # `  f
)  +  1 )  =  ( 2  +  1 ) )
4845, 47eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( # `  p
)  =  ( (
# `  f )  +  1 )  /\  ( # `  f )  =  2 )  -> 
( # `  p )  =  ( 2  +  1 ) )
4948adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f (Walks `  G
) p  /\  (
( # `  p )  =  ( ( # `  f )  +  1 )  /\  ( # `  f )  =  2 ) )  ->  ( # `
 p )  =  ( 2  +  1 ) )
50 2p1e3 11151 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 2  +  1 )  =  3
5149, 50syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f (Walks `  G
) p  /\  (
( # `  p )  =  ( ( # `  f )  +  1 )  /\  ( # `  f )  =  2 ) )  ->  ( # `
 p )  =  3 )
5251exp32 631 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f (Walks `  G )
p  ->  ( ( # `
 p )  =  ( ( # `  f
)  +  1 )  ->  ( ( # `  f )  =  2  ->  ( # `  p
)  =  3 ) ) )
5344, 52mpd 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f (Walks `  G )
p  ->  ( ( # `
 f )  =  2  ->  ( # `  p
)  =  3 ) )
5453adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f (Walks `  G
) p  /\  (
( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  ->  (
( # `  f )  =  2  ->  ( # `
 p )  =  3 ) )
5554imp 445 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f (Walks `  G ) p  /\  ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  /\  ( # `
 f )  =  2 )  ->  ( # `
 p )  =  3 )
56 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  =  ( p ` 
0 )  <->  ( p `  0 )  =  a )
5756biimpi 206 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  =  ( p ` 
0 )  ->  (
p `  0 )  =  a )
58 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( b  =  ( p ` 
1 )  <->  ( p `  1 )  =  b )
5958biimpi 206 . . . . . . . . . . . . . . . . . . . . 21  |-  ( b  =  ( p ` 
1 )  ->  (
p `  1 )  =  b )
60 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( c  =  ( p ` 
2 )  <->  ( p `  2 )  =  c )
6160biimpi 206 . . . . . . . . . . . . . . . . . . . . 21  |-  ( c  =  ( p ` 
2 )  ->  (
p `  2 )  =  c )
6257, 59, 613anim123i 1247 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) )  ->  ( ( p `
 0 )  =  a  /\  ( p `
 1 )  =  b  /\  ( p `
 2 )  =  c ) )
6355, 62anim12i 590 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( f (Walks `  G ) p  /\  ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  /\  ( # `
 f )  =  2 )  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )  ->  ( ( # `
 p )  =  3  /\  ( ( p `  0 )  =  a  /\  (
p `  1 )  =  b  /\  (
p `  2 )  =  c ) ) )
642wlkpwrd 26513 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f (Walks `  G )
p  ->  p  e. Word  V )
65 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( G  e. UPGraph  /\  a  e.  V )  ->  a  e.  V )
6665anim1i 592 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( G  e. UPGraph  /\  a  e.  V )  /\  (
b  e.  V  /\  c  e.  V )
)  ->  ( a  e.  V  /\  (
b  e.  V  /\  c  e.  V )
) )
67 3anass 1042 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( a  e.  V  /\  b  e.  V  /\  c  e.  V )  <->  ( a  e.  V  /\  ( b  e.  V  /\  c  e.  V
) ) )
6866, 67sylibr 224 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( G  e. UPGraph  /\  a  e.  V )  /\  (
b  e.  V  /\  c  e.  V )
)  ->  ( a  e.  V  /\  b  e.  V  /\  c  e.  V ) )
6968adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  ->  ( a  e.  V  /\  b  e.  V  /\  c  e.  V ) )
7064, 69anim12i 590 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f (Walks `  G
) p  /\  (
( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  ->  (
p  e. Word  V  /\  ( a  e.  V  /\  b  e.  V  /\  c  e.  V
) ) )
7170ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( f (Walks `  G ) p  /\  ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  /\  ( # `
 f )  =  2 )  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )  ->  ( p  e. Word  V  /\  ( a  e.  V  /\  b  e.  V  /\  c  e.  V ) ) )
72 eqwrds3 13704 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e. Word  V  /\  ( a  e.  V  /\  b  e.  V  /\  c  e.  V
) )  ->  (
p  =  <" a
b c ">  <->  (
( # `  p )  =  3  /\  (
( p `  0
)  =  a  /\  ( p `  1
)  =  b  /\  ( p `  2
)  =  c ) ) ) )
7371, 72syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( f (Walks `  G ) p  /\  ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  /\  ( # `
 f )  =  2 )  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )  ->  ( p  =  <" a b c ">  <->  ( ( # `
 p )  =  3  /\  ( ( p `  0 )  =  a  /\  (
p `  1 )  =  b  /\  (
p `  2 )  =  c ) ) ) )
7463, 73mpbird 247 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f (Walks `  G ) p  /\  ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  /\  ( # `
 f )  =  2 )  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )  ->  p  =  <" a b c "> )
75 simprr 796 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f (Walks `  G
) p  /\  (
( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  ->  W  =  <" a b c "> )
7675ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f (Walks `  G ) p  /\  ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  /\  ( # `
 f )  =  2 )  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )  ->  W  =  <" a b c "> )
7774, 76eqtr4d 2659 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f (Walks `  G ) p  /\  ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  /\  ( # `
 f )  =  2 )  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )  ->  p  =  W )
7877breq2d 4665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f (Walks `  G ) p  /\  ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  /\  ( # `
 f )  =  2 )  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )  ->  ( f
(Walks `  G )
p  <->  f (Walks `  G ) W ) )
7978biimpd 219 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f (Walks `  G ) p  /\  ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  /\  ( # `
 f )  =  2 )  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )  ->  ( f
(Walks `  G )
p  ->  f (Walks `  G ) W ) )
80 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f (Walks `  G ) p  /\  ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  /\  ( # `
 f )  =  2 )  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )  ->  ( # `  f
)  =  2 )
8179, 80jctird 567 . . . . . . . . . . . . . 14  |-  ( ( ( ( f (Walks `  G ) p  /\  ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> ) )  /\  ( # `
 f )  =  2 )  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )  ->  ( f
(Walks `  G )
p  ->  ( f
(Walks `  G ) W  /\  ( # `  f
)  =  2 ) ) )
8281exp41 638 . . . . . . . . . . . . 13  |-  ( f (Walks `  G )
p  ->  ( (
( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  ->  ( ( # `  f )  =  2  ->  ( ( a  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  c  =  ( p ` 
2 ) )  -> 
( f (Walks `  G ) p  -> 
( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) ) ) ) ) )
8382com25 99 . . . . . . . . . . . 12  |-  ( f (Walks `  G )
p  ->  ( f
(Walks `  G )
p  ->  ( ( # `
 f )  =  2  ->  ( (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) )  ->  ( ( ( ( G  e. UPGraph  /\  a  e.  V )  /\  (
b  e.  V  /\  c  e.  V )
)  /\  W  =  <" a b c "> )  -> 
( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) ) ) ) ) )
8483pm2.43i 52 . . . . . . . . . . 11  |-  ( f (Walks `  G )
p  ->  ( ( # `
 f )  =  2  ->  ( (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) )  ->  ( ( ( ( G  e. UPGraph  /\  a  e.  V )  /\  (
b  e.  V  /\  c  e.  V )
)  /\  W  =  <" a b c "> )  -> 
( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) ) ) ) )
85843imp 1256 . . . . . . . . . 10  |-  ( ( f (Walks `  G
) p  /\  ( # `
 f )  =  2  /\  ( a  =  ( p ` 
0 )  /\  b  =  ( p ` 
1 )  /\  c  =  ( p ` 
2 ) ) )  ->  ( ( ( ( G  e. UPGraph  /\  a  e.  V )  /\  (
b  e.  V  /\  c  e.  V )
)  /\  W  =  <" a b c "> )  -> 
( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) ) )
8685com12 32 . . . . . . . . 9  |-  ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  ->  ( ( f (Walks `  G )
p  /\  ( # `  f
)  =  2  /\  ( a  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )  ->  (
f (Walks `  G
) W  /\  ( # `
 f )  =  2 ) ) )
8786exlimdv 1861 . . . . . . . 8  |-  ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  ->  ( E. p
( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) )  ->  ( f
(Walks `  G ) W  /\  ( # `  f
)  =  2 ) ) )
8843, 87impbid 202 . . . . . . 7  |-  ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  ->  ( ( f (Walks `  G ) W  /\  ( # `  f
)  =  2 )  <->  E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) ) ) )
8988exbidv 1850 . . . . . 6  |-  ( ( ( ( G  e. UPGraph  /\  a  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  W  =  <" a
b c "> )  ->  ( E. f
( f (Walks `  G ) W  /\  ( # `  f )  =  2 )  <->  E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) ) ) )
9089pm5.32da 673 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  a  e.  V )  /\  (
b  e.  V  /\  c  e.  V )
)  ->  ( ( W  =  <" a
b c ">  /\ 
E. f ( f (Walks `  G ) W  /\  ( # `  f
)  =  2 ) )  <->  ( W  = 
<" a b c ">  /\  E. f E. p ( f (Walks `  G )
p  /\  ( # `  f
)  =  2  /\  ( a  =  ( p `  0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) ) ) ) )
91902rexbidva 3056 . . . 4  |-  ( ( G  e. UPGraph  /\  a  e.  V )  ->  ( E. b  e.  V  E. c  e.  V  ( W  =  <" a b c ">  /\  E. f
( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) )  <->  E. b  e.  V  E. c  e.  V  ( W  =  <" a b c ">  /\  E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) ) ) ) )
928, 91syl5bb 272 . . 3  |-  ( ( G  e. UPGraph  /\  a  e.  V )  ->  ( E. c  e.  V  E. b  e.  V  ( W  =  <" a b c ">  /\  E. f
( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) )  <->  E. b  e.  V  E. c  e.  V  ( W  =  <" a b c ">  /\  E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) ) ) ) )
9392rexbidva 3049 . 2  |-  ( G  e. UPGraph  ->  ( E. a  e.  V  E. c  e.  V  E. b  e.  V  ( W  =  <" a b c ">  /\  E. f ( f (Walks `  G ) W  /\  ( # `  f )  =  2 ) )  <->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( W  =  <" a b c ">  /\  E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) ) ) ) )
944, 7, 933bitrd 294 1  |-  ( G  e. UPGraph  ->  ( W  e.  ( 2 WWalksN  G )  <->  E. a  e.  V  E. b  e.  V  E. c  e.  V  ( W  =  <" a b c ">  /\  E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  (
a  =  ( p `
 0 )  /\  b  =  ( p `  1 )  /\  c  =  ( p `  2 ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   3c3 11071   NN0cn0 11292   #chash 13117  Word cword 13291   <"cs3 13587  Vtxcvtx 25874   UPGraph cupgr 25975  Walkscwlks 26492   WWalksN cwwlksn 26718   WWalksNOn cwwlksnon 26719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-wlks 26495  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator