MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2swrd2eqwrdeq Structured version   Visualization version   GIF version

Theorem 2swrd2eqwrdeq 13696
Description: Two words of length at least 2 are equal if and only if they have the same prefix and the same two single symbols suffix. (Contributed by AV, 24-Sep-2018.) (Revised by Mario Carneiro/AV, 23-Oct-2018.)
Assertion
Ref Expression
2swrd2eqwrdeq ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → (𝑊 = 𝑈 ↔ ((#‘𝑊) = (#‘𝑈) ∧ ((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ (𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2)) ∧ ( lastS ‘𝑊) = ( lastS ‘𝑈)))))

Proof of Theorem 2swrd2eqwrdeq
StepHypRef Expression
1 lencl 13324 . . . . 5 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℕ0)
2 1z 11407 . . . . . . . . . 10 1 ∈ ℤ
3 nn0z 11400 . . . . . . . . . 10 ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ ℤ)
4 zltp1le 11427 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (#‘𝑊) ∈ ℤ) → (1 < (#‘𝑊) ↔ (1 + 1) ≤ (#‘𝑊)))
52, 3, 4sylancr 695 . . . . . . . . 9 ((#‘𝑊) ∈ ℕ0 → (1 < (#‘𝑊) ↔ (1 + 1) ≤ (#‘𝑊)))
6 1p1e2 11134 . . . . . . . . . . . 12 (1 + 1) = 2
76a1i 11 . . . . . . . . . . 11 ((#‘𝑊) ∈ ℕ0 → (1 + 1) = 2)
87breq1d 4663 . . . . . . . . . 10 ((#‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (#‘𝑊) ↔ 2 ≤ (#‘𝑊)))
98biimpd 219 . . . . . . . . 9 ((#‘𝑊) ∈ ℕ0 → ((1 + 1) ≤ (#‘𝑊) → 2 ≤ (#‘𝑊)))
105, 9sylbid 230 . . . . . . . 8 ((#‘𝑊) ∈ ℕ0 → (1 < (#‘𝑊) → 2 ≤ (#‘𝑊)))
1110imp 445 . . . . . . 7 (((#‘𝑊) ∈ ℕ0 ∧ 1 < (#‘𝑊)) → 2 ≤ (#‘𝑊))
12 2nn0 11309 . . . . . . . 8 2 ∈ ℕ0
13 simpl 473 . . . . . . . 8 (((#‘𝑊) ∈ ℕ0 ∧ 1 < (#‘𝑊)) → (#‘𝑊) ∈ ℕ0)
14 nn0sub 11343 . . . . . . . 8 ((2 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0) → (2 ≤ (#‘𝑊) ↔ ((#‘𝑊) − 2) ∈ ℕ0))
1512, 13, 14sylancr 695 . . . . . . 7 (((#‘𝑊) ∈ ℕ0 ∧ 1 < (#‘𝑊)) → (2 ≤ (#‘𝑊) ↔ ((#‘𝑊) − 2) ∈ ℕ0))
1611, 15mpbid 222 . . . . . 6 (((#‘𝑊) ∈ ℕ0 ∧ 1 < (#‘𝑊)) → ((#‘𝑊) − 2) ∈ ℕ0)
173adantr 481 . . . . . . 7 (((#‘𝑊) ∈ ℕ0 ∧ 1 < (#‘𝑊)) → (#‘𝑊) ∈ ℤ)
18 0red 10041 . . . . . . . . . 10 ((#‘𝑊) ∈ ℕ0 → 0 ∈ ℝ)
19 1red 10055 . . . . . . . . . 10 ((#‘𝑊) ∈ ℕ0 → 1 ∈ ℝ)
20 nn0re 11301 . . . . . . . . . 10 ((#‘𝑊) ∈ ℕ0 → (#‘𝑊) ∈ ℝ)
2118, 19, 203jca 1242 . . . . . . . . 9 ((#‘𝑊) ∈ ℕ0 → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ))
22 0lt1 10550 . . . . . . . . 9 0 < 1
23 lttr 10114 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ) → ((0 < 1 ∧ 1 < (#‘𝑊)) → 0 < (#‘𝑊)))
2423expd 452 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (#‘𝑊) ∈ ℝ) → (0 < 1 → (1 < (#‘𝑊) → 0 < (#‘𝑊))))
2521, 22, 24mpisyl 21 . . . . . . . 8 ((#‘𝑊) ∈ ℕ0 → (1 < (#‘𝑊) → 0 < (#‘𝑊)))
2625imp 445 . . . . . . 7 (((#‘𝑊) ∈ ℕ0 ∧ 1 < (#‘𝑊)) → 0 < (#‘𝑊))
27 elnnz 11387 . . . . . . 7 ((#‘𝑊) ∈ ℕ ↔ ((#‘𝑊) ∈ ℤ ∧ 0 < (#‘𝑊)))
2817, 26, 27sylanbrc 698 . . . . . 6 (((#‘𝑊) ∈ ℕ0 ∧ 1 < (#‘𝑊)) → (#‘𝑊) ∈ ℕ)
29 2pos 11112 . . . . . . . 8 0 < 2
30 2re 11090 . . . . . . . . . 10 2 ∈ ℝ
3130a1i 11 . . . . . . . . 9 ((#‘𝑊) ∈ ℕ0 → 2 ∈ ℝ)
3231, 20ltsubposd 10613 . . . . . . . 8 ((#‘𝑊) ∈ ℕ0 → (0 < 2 ↔ ((#‘𝑊) − 2) < (#‘𝑊)))
3329, 32mpbii 223 . . . . . . 7 ((#‘𝑊) ∈ ℕ0 → ((#‘𝑊) − 2) < (#‘𝑊))
3433adantr 481 . . . . . 6 (((#‘𝑊) ∈ ℕ0 ∧ 1 < (#‘𝑊)) → ((#‘𝑊) − 2) < (#‘𝑊))
35 elfzo0 12508 . . . . . 6 (((#‘𝑊) − 2) ∈ (0..^(#‘𝑊)) ↔ (((#‘𝑊) − 2) ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ ((#‘𝑊) − 2) < (#‘𝑊)))
3616, 28, 34, 35syl3anbrc 1246 . . . . 5 (((#‘𝑊) ∈ ℕ0 ∧ 1 < (#‘𝑊)) → ((#‘𝑊) − 2) ∈ (0..^(#‘𝑊)))
371, 36sylan 488 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → ((#‘𝑊) − 2) ∈ (0..^(#‘𝑊)))
38373adant2 1080 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → ((#‘𝑊) − 2) ∈ (0..^(#‘𝑊)))
39 2swrdeqwrdeq 13453 . . 3 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ ((#‘𝑊) − 2) ∈ (0..^(#‘𝑊))) → (𝑊 = 𝑈 ↔ ((#‘𝑊) = (#‘𝑈) ∧ ((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ (𝑊 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = (𝑈 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩)))))
4038, 39syld3an3 1371 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → (𝑊 = 𝑈 ↔ ((#‘𝑊) = (#‘𝑈) ∧ ((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ (𝑊 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = (𝑈 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩)))))
41 swrd2lsw 13695 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → (𝑊 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = ⟨“(𝑊‘((#‘𝑊) − 2))( lastS ‘𝑊)”⟩)
42413adant2 1080 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → (𝑊 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = ⟨“(𝑊‘((#‘𝑊) − 2))( lastS ‘𝑊)”⟩)
4342adantr 481 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → (𝑊 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = ⟨“(𝑊‘((#‘𝑊) − 2))( lastS ‘𝑊)”⟩)
44 breq2 4657 . . . . . . . . . . 11 ((#‘𝑊) = (#‘𝑈) → (1 < (#‘𝑊) ↔ 1 < (#‘𝑈)))
45443anbi3d 1405 . . . . . . . . . 10 ((#‘𝑊) = (#‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ↔ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑈))))
46 swrd2lsw 13695 . . . . . . . . . . 11 ((𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑈)) → (𝑈 substr ⟨((#‘𝑈) − 2), (#‘𝑈)⟩) = ⟨“(𝑈‘((#‘𝑈) − 2))( lastS ‘𝑈)”⟩)
47463adant1 1079 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑈)) → (𝑈 substr ⟨((#‘𝑈) − 2), (#‘𝑈)⟩) = ⟨“(𝑈‘((#‘𝑈) − 2))( lastS ‘𝑈)”⟩)
4845, 47syl6bi 243 . . . . . . . . 9 ((#‘𝑊) = (#‘𝑈) → ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → (𝑈 substr ⟨((#‘𝑈) − 2), (#‘𝑈)⟩) = ⟨“(𝑈‘((#‘𝑈) − 2))( lastS ‘𝑈)”⟩))
4948impcom 446 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → (𝑈 substr ⟨((#‘𝑈) − 2), (#‘𝑈)⟩) = ⟨“(𝑈‘((#‘𝑈) − 2))( lastS ‘𝑈)”⟩)
50 oveq1 6657 . . . . . . . . . . . 12 ((#‘𝑊) = (#‘𝑈) → ((#‘𝑊) − 2) = ((#‘𝑈) − 2))
51 id 22 . . . . . . . . . . . 12 ((#‘𝑊) = (#‘𝑈) → (#‘𝑊) = (#‘𝑈))
5250, 51opeq12d 4410 . . . . . . . . . . 11 ((#‘𝑊) = (#‘𝑈) → ⟨((#‘𝑊) − 2), (#‘𝑊)⟩ = ⟨((#‘𝑈) − 2), (#‘𝑈)⟩)
5352oveq2d 6666 . . . . . . . . . 10 ((#‘𝑊) = (#‘𝑈) → (𝑈 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = (𝑈 substr ⟨((#‘𝑈) − 2), (#‘𝑈)⟩))
5453eqeq1d 2624 . . . . . . . . 9 ((#‘𝑊) = (#‘𝑈) → ((𝑈 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = ⟨“(𝑈‘((#‘𝑈) − 2))( lastS ‘𝑈)”⟩ ↔ (𝑈 substr ⟨((#‘𝑈) − 2), (#‘𝑈)⟩) = ⟨“(𝑈‘((#‘𝑈) − 2))( lastS ‘𝑈)”⟩))
5554adantl 482 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → ((𝑈 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = ⟨“(𝑈‘((#‘𝑈) − 2))( lastS ‘𝑈)”⟩ ↔ (𝑈 substr ⟨((#‘𝑈) − 2), (#‘𝑈)⟩) = ⟨“(𝑈‘((#‘𝑈) − 2))( lastS ‘𝑈)”⟩))
5649, 55mpbird 247 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → (𝑈 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = ⟨“(𝑈‘((#‘𝑈) − 2))( lastS ‘𝑈)”⟩)
5743, 56eqeq12d 2637 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → ((𝑊 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = (𝑈 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) ↔ ⟨“(𝑊‘((#‘𝑊) − 2))( lastS ‘𝑊)”⟩ = ⟨“(𝑈‘((#‘𝑈) − 2))( lastS ‘𝑈)”⟩))
58 fvexd 6203 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → (𝑊‘((#‘𝑊) − 2)) ∈ V)
59 fvexd 6203 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → ( lastS ‘𝑊) ∈ V)
60 fvexd 6203 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → (𝑈‘((#‘𝑈) − 2)) ∈ V)
61 fvexd 6203 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → ( lastS ‘𝑈) ∈ V)
62 s2eq2s1eq 13681 . . . . . . 7 ((((𝑊‘((#‘𝑊) − 2)) ∈ V ∧ ( lastS ‘𝑊) ∈ V) ∧ ((𝑈‘((#‘𝑈) − 2)) ∈ V ∧ ( lastS ‘𝑈) ∈ V)) → (⟨“(𝑊‘((#‘𝑊) − 2))( lastS ‘𝑊)”⟩ = ⟨“(𝑈‘((#‘𝑈) − 2))( lastS ‘𝑈)”⟩ ↔ (⟨“(𝑊‘((#‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((#‘𝑈) − 2))”⟩ ∧ ⟨“( lastS ‘𝑊)”⟩ = ⟨“( lastS ‘𝑈)”⟩)))
6358, 59, 60, 61, 62syl22anc 1327 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → (⟨“(𝑊‘((#‘𝑊) − 2))( lastS ‘𝑊)”⟩ = ⟨“(𝑈‘((#‘𝑈) − 2))( lastS ‘𝑈)”⟩ ↔ (⟨“(𝑊‘((#‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((#‘𝑈) − 2))”⟩ ∧ ⟨“( lastS ‘𝑊)”⟩ = ⟨“( lastS ‘𝑈)”⟩)))
64 fvex 6201 . . . . . . . . 9 (𝑊‘((#‘𝑊) − 2)) ∈ V
65 s111 13395 . . . . . . . . 9 (((𝑊‘((#‘𝑊) − 2)) ∈ V ∧ (𝑈‘((#‘𝑈) − 2)) ∈ V) → (⟨“(𝑊‘((#‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((#‘𝑈) − 2))”⟩ ↔ (𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑈) − 2))))
6664, 60, 65sylancr 695 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → (⟨“(𝑊‘((#‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((#‘𝑈) − 2))”⟩ ↔ (𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑈) − 2))))
67 oveq1 6657 . . . . . . . . . . . 12 ((#‘𝑈) = (#‘𝑊) → ((#‘𝑈) − 2) = ((#‘𝑊) − 2))
6867fveq2d 6195 . . . . . . . . . . 11 ((#‘𝑈) = (#‘𝑊) → (𝑈‘((#‘𝑈) − 2)) = (𝑈‘((#‘𝑊) − 2)))
6968eqcoms 2630 . . . . . . . . . 10 ((#‘𝑊) = (#‘𝑈) → (𝑈‘((#‘𝑈) − 2)) = (𝑈‘((#‘𝑊) − 2)))
7069adantl 482 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → (𝑈‘((#‘𝑈) − 2)) = (𝑈‘((#‘𝑊) − 2)))
7170eqeq2d 2632 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → ((𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑈) − 2)) ↔ (𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2))))
7266, 71bitrd 268 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → (⟨“(𝑊‘((#‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((#‘𝑈) − 2))”⟩ ↔ (𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2))))
73 fvex 6201 . . . . . . . 8 ( lastS ‘𝑊) ∈ V
74 s111 13395 . . . . . . . 8 ((( lastS ‘𝑊) ∈ V ∧ ( lastS ‘𝑈) ∈ V) → (⟨“( lastS ‘𝑊)”⟩ = ⟨“( lastS ‘𝑈)”⟩ ↔ ( lastS ‘𝑊) = ( lastS ‘𝑈)))
7573, 61, 74sylancr 695 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → (⟨“( lastS ‘𝑊)”⟩ = ⟨“( lastS ‘𝑈)”⟩ ↔ ( lastS ‘𝑊) = ( lastS ‘𝑈)))
7672, 75anbi12d 747 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → ((⟨“(𝑊‘((#‘𝑊) − 2))”⟩ = ⟨“(𝑈‘((#‘𝑈) − 2))”⟩ ∧ ⟨“( lastS ‘𝑊)”⟩ = ⟨“( lastS ‘𝑈)”⟩) ↔ ((𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2)) ∧ ( lastS ‘𝑊) = ( lastS ‘𝑈))))
7757, 63, 763bitrd 294 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → ((𝑊 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = (𝑈 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) ↔ ((𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2)) ∧ ( lastS ‘𝑊) = ( lastS ‘𝑈))))
7877anbi2d 740 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → (((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ (𝑊 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = (𝑈 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩)) ↔ ((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ ((𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2)) ∧ ( lastS ‘𝑊) = ( lastS ‘𝑈)))))
79 3anass 1042 . . . 4 (((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ (𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2)) ∧ ( lastS ‘𝑊) = ( lastS ‘𝑈)) ↔ ((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ ((𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2)) ∧ ( lastS ‘𝑊) = ( lastS ‘𝑈))))
8078, 79syl6bbr 278 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) ∧ (#‘𝑊) = (#‘𝑈)) → (((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ (𝑊 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = (𝑈 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩)) ↔ ((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ (𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2)) ∧ ( lastS ‘𝑊) = ( lastS ‘𝑈))))
8180pm5.32da 673 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → (((#‘𝑊) = (#‘𝑈) ∧ ((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ (𝑊 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = (𝑈 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩))) ↔ ((#‘𝑊) = (#‘𝑈) ∧ ((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ (𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2)) ∧ ( lastS ‘𝑊) = ( lastS ‘𝑈)))))
8240, 81bitrd 268 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → (𝑊 = 𝑈 ↔ ((#‘𝑊) = (#‘𝑈) ∧ ((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ (𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2)) ∧ ( lastS ‘𝑊) = ( lastS ‘𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cn 11020  2c2 11070  0cn0 11292  cz 11377  ..^cfzo 12465  #chash 13117  Word cword 13291   lastS clsw 13292  ⟨“cs1 13294   substr csubstr 13295  ⟨“cs2 13586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-s2 13593
This theorem is referenced by:  numclwlk1lem2f1  27227
  Copyright terms: Public domain W3C validator