MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3pthdlem1 Structured version   Visualization version   Unicode version

Theorem 3pthdlem1 27024
Description: Lemma 1 for 3pthd 27034. (Contributed by AV, 9-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p  |-  P  = 
<" A B C D ">
3wlkd.f  |-  F  = 
<" J K L ">
3wlkd.s  |-  ( ph  ->  ( ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
) )
3wlkd.n  |-  ( ph  ->  ( ( A  =/= 
B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )
Assertion
Ref Expression
3pthdlem1  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  P
) ) A. j  e.  ( 1..^ ( # `  F ) ) ( k  =/=  j  -> 
( P `  k
)  =/=  ( P `
 j ) ) )
Distinct variable groups:    A, k    B, k    C, k    D, k   
k, J    k, K    k, L    k, V    k, F    P, k    j, F, k    P, j
Allowed substitution hints:    ph( j, k)    A( j)    B( j)    C( j)    D( j)    J( j)    K( j)    L( j)    V( j)

Proof of Theorem 3pthdlem1
StepHypRef Expression
1 3wlkd.p . . . . 5  |-  P  = 
<" A B C D ">
2 3wlkd.f . . . . 5  |-  F  = 
<" J K L ">
3 3wlkd.s . . . . 5  |-  ( ph  ->  ( ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
) )
41, 2, 33wlkdlem3 27021 . . . 4  |-  ( ph  ->  ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) ) )
5 3wlkd.n . . . 4  |-  ( ph  ->  ( ( A  =/= 
B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )
6 simpr1l 1118 . . . . . . . 8  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  ->  A  =/=  B )
7 simpl 473 . . . . . . . . . . 11  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( P `  0
)  =  A )
87adantr 481 . . . . . . . . . 10  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( P `  0
)  =  A )
9 simpr 477 . . . . . . . . . . 11  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( P `  1
)  =  B )
109adantr 481 . . . . . . . . . 10  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( P `  1
)  =  B )
118, 10neeq12d 2855 . . . . . . . . 9  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  <->  A  =/=  B ) )
1211adantr 481 . . . . . . . 8  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  <->  A  =/=  B ) )
136, 12mpbird 247 . . . . . . 7  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( P `  0
)  =/=  ( P `
 1 ) )
1413a1d 25 . . . . . 6  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( 0  =/=  1  ->  ( P `  0
)  =/=  ( P `
 1 ) ) )
15 simpr1r 1119 . . . . . . . 8  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  ->  A  =/=  C )
16 simpl 473 . . . . . . . . . . 11  |-  ( ( ( P `  2
)  =  C  /\  ( P `  3 )  =  D )  -> 
( P `  2
)  =  C )
1716adantl 482 . . . . . . . . . 10  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( P `  2
)  =  C )
188, 17neeq12d 2855 . . . . . . . . 9  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( ( P ` 
0 )  =/=  ( P `  2 )  <->  A  =/=  C ) )
1918adantr 481 . . . . . . . 8  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( ( P ` 
0 )  =/=  ( P `  2 )  <->  A  =/=  C ) )
2015, 19mpbird 247 . . . . . . 7  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( P `  0
)  =/=  ( P `
 2 ) )
2120a1d 25 . . . . . 6  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( 0  =/=  2  ->  ( P `  0
)  =/=  ( P `
 2 ) ) )
2214, 21jca 554 . . . . 5  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( ( 0  =/=  1  ->  ( P `  0 )  =/=  ( P `  1
) )  /\  (
0  =/=  2  -> 
( P `  0
)  =/=  ( P `
 2 ) ) ) )
23 eqid 2622 . . . . . . . 8  |-  1  =  1
24232a1i 12 . . . . . . 7  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( ( P ` 
1 )  =  ( P `  1 )  ->  1  =  1 ) )
2524necon3d 2815 . . . . . 6  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( 1  =/=  1  ->  ( P `  1
)  =/=  ( P `
 1 ) ) )
26 simpr2l 1120 . . . . . . . 8  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  ->  B  =/=  C )
2710, 17neeq12d 2855 . . . . . . . . 9  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( ( P ` 
1 )  =/=  ( P `  2 )  <->  B  =/=  C ) )
2827adantr 481 . . . . . . . 8  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( ( P ` 
1 )  =/=  ( P `  2 )  <->  B  =/=  C ) )
2926, 28mpbird 247 . . . . . . 7  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( P `  1
)  =/=  ( P `
 2 ) )
3029a1d 25 . . . . . 6  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( 1  =/=  2  ->  ( P `  1
)  =/=  ( P `
 2 ) ) )
3125, 30jca 554 . . . . 5  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( ( 1  =/=  1  ->  ( P `  1 )  =/=  ( P `  1
) )  /\  (
1  =/=  2  -> 
( P `  1
)  =/=  ( P `
 2 ) ) ) )
3229necomd 2849 . . . . . . 7  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( P `  2
)  =/=  ( P `
 1 ) )
3332a1d 25 . . . . . 6  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( 2  =/=  1  ->  ( P `  2
)  =/=  ( P `
 1 ) ) )
34 eqid 2622 . . . . . . . 8  |-  2  =  2
35342a1i 12 . . . . . . 7  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( ( P ` 
2 )  =  ( P `  2 )  ->  2  =  2 ) )
3635necon3d 2815 . . . . . 6  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( 2  =/=  2  ->  ( P `  2
)  =/=  ( P `
 2 ) ) )
37 simpr2r 1121 . . . . . . . . . 10  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  ->  B  =/=  D )
38 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( P `  2
)  =  C  /\  ( P `  3 )  =  D )  -> 
( P `  3
)  =  D )
3938adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( P `  3
)  =  D )
4010, 39neeq12d 2855 . . . . . . . . . . 11  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( ( P ` 
1 )  =/=  ( P `  3 )  <->  B  =/=  D ) )
4140adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( ( P ` 
1 )  =/=  ( P `  3 )  <->  B  =/=  D ) )
4237, 41mpbird 247 . . . . . . . . 9  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( P `  1
)  =/=  ( P `
 3 ) )
4342necomd 2849 . . . . . . . 8  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( P `  3
)  =/=  ( P `
 1 ) )
4443a1d 25 . . . . . . 7  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( 3  =/=  1  ->  ( P `  3
)  =/=  ( P `
 1 ) ) )
45 simp3 1063 . . . . . . . . . . 11  |-  ( ( ( A  =/=  B  /\  A  =/=  C
)  /\  ( B  =/=  C  /\  B  =/= 
D )  /\  C  =/=  D )  ->  C  =/=  D )
4645necomd 2849 . . . . . . . . . 10  |-  ( ( ( A  =/=  B  /\  A  =/=  C
)  /\  ( B  =/=  C  /\  B  =/= 
D )  /\  C  =/=  D )  ->  D  =/=  C )
4746adantl 482 . . . . . . . . 9  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  ->  D  =/=  C )
48 simpl 473 . . . . . . . . . . . . 13  |-  ( ( ( P `  3
)  =  D  /\  ( P `  2 )  =  C )  -> 
( P `  3
)  =  D )
49 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( P `  3
)  =  D  /\  ( P `  2 )  =  C )  -> 
( P `  2
)  =  C )
5048, 49neeq12d 2855 . . . . . . . . . . . 12  |-  ( ( ( P `  3
)  =  D  /\  ( P `  2 )  =  C )  -> 
( ( P ` 
3 )  =/=  ( P `  2 )  <->  D  =/=  C ) )
5150ancoms 469 . . . . . . . . . . 11  |-  ( ( ( P `  2
)  =  C  /\  ( P `  3 )  =  D )  -> 
( ( P ` 
3 )  =/=  ( P `  2 )  <->  D  =/=  C ) )
5251adantl 482 . . . . . . . . . 10  |-  ( ( ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B )  /\  ( ( P `  2 )  =  C  /\  ( P `  3 )  =  D ) )  -> 
( ( P ` 
3 )  =/=  ( P `  2 )  <->  D  =/=  C ) )
5352adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( ( P ` 
3 )  =/=  ( P `  2 )  <->  D  =/=  C ) )
5447, 53mpbird 247 . . . . . . . 8  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( P `  3
)  =/=  ( P `
 2 ) )
5554a1d 25 . . . . . . 7  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( 3  =/=  2  ->  ( P `  3
)  =/=  ( P `
 2 ) ) )
5644, 55jca 554 . . . . . 6  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( ( 3  =/=  1  ->  ( P `  3 )  =/=  ( P `  1
) )  /\  (
3  =/=  2  -> 
( P `  3
)  =/=  ( P `
 2 ) ) ) )
5733, 36, 56jca31 557 . . . . 5  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( ( ( 2  =/=  1  ->  ( P `  2 )  =/=  ( P `  1
) )  /\  (
2  =/=  2  -> 
( P `  2
)  =/=  ( P `
 2 ) ) )  /\  ( ( 3  =/=  1  -> 
( P `  3
)  =/=  ( P `
 1 ) )  /\  ( 3  =/=  2  ->  ( P `  3 )  =/=  ( P `  2
) ) ) ) )
5822, 31, 57jca31 557 . . . 4  |-  ( ( ( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B )  /\  (
( P `  2
)  =  C  /\  ( P `  3 )  =  D ) )  /\  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  D )  /\  C  =/=  D ) )  -> 
( ( ( ( 0  =/=  1  -> 
( P `  0
)  =/=  ( P `
 1 ) )  /\  ( 0  =/=  2  ->  ( P `  0 )  =/=  ( P `  2
) ) )  /\  ( ( 1  =/=  1  ->  ( P `  1 )  =/=  ( P `  1
) )  /\  (
1  =/=  2  -> 
( P `  1
)  =/=  ( P `
 2 ) ) ) )  /\  (
( ( 2  =/=  1  ->  ( P `  2 )  =/=  ( P `  1
) )  /\  (
2  =/=  2  -> 
( P `  2
)  =/=  ( P `
 2 ) ) )  /\  ( ( 3  =/=  1  -> 
( P `  3
)  =/=  ( P `
 1 ) )  /\  ( 3  =/=  2  ->  ( P `  3 )  =/=  ( P `  2
) ) ) ) ) )
594, 5, 58syl2anc 693 . . 3  |-  ( ph  ->  ( ( ( ( 0  =/=  1  -> 
( P `  0
)  =/=  ( P `
 1 ) )  /\  ( 0  =/=  2  ->  ( P `  0 )  =/=  ( P `  2
) ) )  /\  ( ( 1  =/=  1  ->  ( P `  1 )  =/=  ( P `  1
) )  /\  (
1  =/=  2  -> 
( P `  1
)  =/=  ( P `
 2 ) ) ) )  /\  (
( ( 2  =/=  1  ->  ( P `  2 )  =/=  ( P `  1
) )  /\  (
2  =/=  2  -> 
( P `  2
)  =/=  ( P `
 2 ) ) )  /\  ( ( 3  =/=  1  -> 
( P `  3
)  =/=  ( P `
 1 ) )  /\  ( 3  =/=  2  ->  ( P `  3 )  =/=  ( P `  2
) ) ) ) ) )
601fveq2i 6194 . . . . . . . 8  |-  ( # `  P )  =  (
# `  <" A B C D "> )
61 s4len 13644 . . . . . . . 8  |-  ( # `  <" A B C D "> )  =  4
6260, 61eqtri 2644 . . . . . . 7  |-  ( # `  P )  =  4
6362oveq2i 6661 . . . . . 6  |-  ( 0..^ ( # `  P
) )  =  ( 0..^ 4 )
64 fzo0to42pr 12555 . . . . . 6  |-  ( 0..^ 4 )  =  ( { 0 ,  1 }  u.  { 2 ,  3 } )
6563, 64eqtri 2644 . . . . 5  |-  ( 0..^ ( # `  P
) )  =  ( { 0 ,  1 }  u.  { 2 ,  3 } )
6665raleqi 3142 . . . 4  |-  ( A. k  e.  ( 0..^ ( # `  P
) ) ( ( k  =/=  1  -> 
( P `  k
)  =/=  ( P `
 1 ) )  /\  ( k  =/=  2  ->  ( P `  k )  =/=  ( P `  2 )
) )  <->  A. k  e.  ( { 0 ,  1 }  u.  {
2 ,  3 } ) ( ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1
) )  /\  (
k  =/=  2  -> 
( P `  k
)  =/=  ( P `
 2 ) ) ) )
67 ralunb 3794 . . . 4  |-  ( A. k  e.  ( {
0 ,  1 }  u.  { 2 ,  3 } ) ( ( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  /\  ( k  =/=  2  ->  ( P `  k )  =/=  ( P `  2 )
) )  <->  ( A. k  e.  { 0 ,  1 }  (
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  /\  ( k  =/=  2  ->  ( P `  k )  =/=  ( P `  2 )
) )  /\  A. k  e.  { 2 ,  3 }  (
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  /\  ( k  =/=  2  ->  ( P `  k )  =/=  ( P `  2 )
) ) ) )
68 c0ex 10034 . . . . . 6  |-  0  e.  _V
69 1ex 10035 . . . . . 6  |-  1  e.  _V
70 neeq1 2856 . . . . . . . 8  |-  ( k  =  0  ->  (
k  =/=  1  <->  0  =/=  1 ) )
71 fveq2 6191 . . . . . . . . 9  |-  ( k  =  0  ->  ( P `  k )  =  ( P ` 
0 ) )
7271neeq1d 2853 . . . . . . . 8  |-  ( k  =  0  ->  (
( P `  k
)  =/=  ( P `
 1 )  <->  ( P `  0 )  =/=  ( P `  1
) ) )
7370, 72imbi12d 334 . . . . . . 7  |-  ( k  =  0  ->  (
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  <-> 
( 0  =/=  1  ->  ( P `  0
)  =/=  ( P `
 1 ) ) ) )
74 neeq1 2856 . . . . . . . 8  |-  ( k  =  0  ->  (
k  =/=  2  <->  0  =/=  2 ) )
7571neeq1d 2853 . . . . . . . 8  |-  ( k  =  0  ->  (
( P `  k
)  =/=  ( P `
 2 )  <->  ( P `  0 )  =/=  ( P `  2
) ) )
7674, 75imbi12d 334 . . . . . . 7  |-  ( k  =  0  ->  (
( k  =/=  2  ->  ( P `  k
)  =/=  ( P `
 2 ) )  <-> 
( 0  =/=  2  ->  ( P `  0
)  =/=  ( P `
 2 ) ) ) )
7773, 76anbi12d 747 . . . . . 6  |-  ( k  =  0  ->  (
( ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1 )
)  /\  ( k  =/=  2  ->  ( P `
 k )  =/=  ( P `  2
) ) )  <->  ( (
0  =/=  1  -> 
( P `  0
)  =/=  ( P `
 1 ) )  /\  ( 0  =/=  2  ->  ( P `  0 )  =/=  ( P `  2
) ) ) ) )
78 neeq1 2856 . . . . . . . 8  |-  ( k  =  1  ->  (
k  =/=  1  <->  1  =/=  1 ) )
79 fveq2 6191 . . . . . . . . 9  |-  ( k  =  1  ->  ( P `  k )  =  ( P ` 
1 ) )
8079neeq1d 2853 . . . . . . . 8  |-  ( k  =  1  ->  (
( P `  k
)  =/=  ( P `
 1 )  <->  ( P `  1 )  =/=  ( P `  1
) ) )
8178, 80imbi12d 334 . . . . . . 7  |-  ( k  =  1  ->  (
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  <-> 
( 1  =/=  1  ->  ( P `  1
)  =/=  ( P `
 1 ) ) ) )
82 neeq1 2856 . . . . . . . 8  |-  ( k  =  1  ->  (
k  =/=  2  <->  1  =/=  2 ) )
8379neeq1d 2853 . . . . . . . 8  |-  ( k  =  1  ->  (
( P `  k
)  =/=  ( P `
 2 )  <->  ( P `  1 )  =/=  ( P `  2
) ) )
8482, 83imbi12d 334 . . . . . . 7  |-  ( k  =  1  ->  (
( k  =/=  2  ->  ( P `  k
)  =/=  ( P `
 2 ) )  <-> 
( 1  =/=  2  ->  ( P `  1
)  =/=  ( P `
 2 ) ) ) )
8581, 84anbi12d 747 . . . . . 6  |-  ( k  =  1  ->  (
( ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1 )
)  /\  ( k  =/=  2  ->  ( P `
 k )  =/=  ( P `  2
) ) )  <->  ( (
1  =/=  1  -> 
( P `  1
)  =/=  ( P `
 1 ) )  /\  ( 1  =/=  2  ->  ( P `  1 )  =/=  ( P `  2
) ) ) ) )
8668, 69, 77, 85ralpr 4238 . . . . 5  |-  ( A. k  e.  { 0 ,  1 }  (
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  /\  ( k  =/=  2  ->  ( P `  k )  =/=  ( P `  2 )
) )  <->  ( (
( 0  =/=  1  ->  ( P `  0
)  =/=  ( P `
 1 ) )  /\  ( 0  =/=  2  ->  ( P `  0 )  =/=  ( P `  2
) ) )  /\  ( ( 1  =/=  1  ->  ( P `  1 )  =/=  ( P `  1
) )  /\  (
1  =/=  2  -> 
( P `  1
)  =/=  ( P `
 2 ) ) ) ) )
87 2ex 11092 . . . . . 6  |-  2  e.  _V
88 3ex 11096 . . . . . 6  |-  3  e.  _V
89 neeq1 2856 . . . . . . . 8  |-  ( k  =  2  ->  (
k  =/=  1  <->  2  =/=  1 ) )
90 fveq2 6191 . . . . . . . . 9  |-  ( k  =  2  ->  ( P `  k )  =  ( P ` 
2 ) )
9190neeq1d 2853 . . . . . . . 8  |-  ( k  =  2  ->  (
( P `  k
)  =/=  ( P `
 1 )  <->  ( P `  2 )  =/=  ( P `  1
) ) )
9289, 91imbi12d 334 . . . . . . 7  |-  ( k  =  2  ->  (
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  <-> 
( 2  =/=  1  ->  ( P `  2
)  =/=  ( P `
 1 ) ) ) )
93 neeq1 2856 . . . . . . . 8  |-  ( k  =  2  ->  (
k  =/=  2  <->  2  =/=  2 ) )
9490neeq1d 2853 . . . . . . . 8  |-  ( k  =  2  ->  (
( P `  k
)  =/=  ( P `
 2 )  <->  ( P `  2 )  =/=  ( P `  2
) ) )
9593, 94imbi12d 334 . . . . . . 7  |-  ( k  =  2  ->  (
( k  =/=  2  ->  ( P `  k
)  =/=  ( P `
 2 ) )  <-> 
( 2  =/=  2  ->  ( P `  2
)  =/=  ( P `
 2 ) ) ) )
9692, 95anbi12d 747 . . . . . 6  |-  ( k  =  2  ->  (
( ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1 )
)  /\  ( k  =/=  2  ->  ( P `
 k )  =/=  ( P `  2
) ) )  <->  ( (
2  =/=  1  -> 
( P `  2
)  =/=  ( P `
 1 ) )  /\  ( 2  =/=  2  ->  ( P `  2 )  =/=  ( P `  2
) ) ) ) )
97 neeq1 2856 . . . . . . . 8  |-  ( k  =  3  ->  (
k  =/=  1  <->  3  =/=  1 ) )
98 fveq2 6191 . . . . . . . . 9  |-  ( k  =  3  ->  ( P `  k )  =  ( P ` 
3 ) )
9998neeq1d 2853 . . . . . . . 8  |-  ( k  =  3  ->  (
( P `  k
)  =/=  ( P `
 1 )  <->  ( P `  3 )  =/=  ( P `  1
) ) )
10097, 99imbi12d 334 . . . . . . 7  |-  ( k  =  3  ->  (
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  <-> 
( 3  =/=  1  ->  ( P `  3
)  =/=  ( P `
 1 ) ) ) )
101 neeq1 2856 . . . . . . . 8  |-  ( k  =  3  ->  (
k  =/=  2  <->  3  =/=  2 ) )
10298neeq1d 2853 . . . . . . . 8  |-  ( k  =  3  ->  (
( P `  k
)  =/=  ( P `
 2 )  <->  ( P `  3 )  =/=  ( P `  2
) ) )
103101, 102imbi12d 334 . . . . . . 7  |-  ( k  =  3  ->  (
( k  =/=  2  ->  ( P `  k
)  =/=  ( P `
 2 ) )  <-> 
( 3  =/=  2  ->  ( P `  3
)  =/=  ( P `
 2 ) ) ) )
104100, 103anbi12d 747 . . . . . 6  |-  ( k  =  3  ->  (
( ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1 )
)  /\  ( k  =/=  2  ->  ( P `
 k )  =/=  ( P `  2
) ) )  <->  ( (
3  =/=  1  -> 
( P `  3
)  =/=  ( P `
 1 ) )  /\  ( 3  =/=  2  ->  ( P `  3 )  =/=  ( P `  2
) ) ) ) )
10587, 88, 96, 104ralpr 4238 . . . . 5  |-  ( A. k  e.  { 2 ,  3 }  (
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  /\  ( k  =/=  2  ->  ( P `  k )  =/=  ( P `  2 )
) )  <->  ( (
( 2  =/=  1  ->  ( P `  2
)  =/=  ( P `
 1 ) )  /\  ( 2  =/=  2  ->  ( P `  2 )  =/=  ( P `  2
) ) )  /\  ( ( 3  =/=  1  ->  ( P `  3 )  =/=  ( P `  1
) )  /\  (
3  =/=  2  -> 
( P `  3
)  =/=  ( P `
 2 ) ) ) ) )
10686, 105anbi12i 733 . . . 4  |-  ( ( A. k  e.  {
0 ,  1 }  ( ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1 )
)  /\  ( k  =/=  2  ->  ( P `
 k )  =/=  ( P `  2
) ) )  /\  A. k  e.  { 2 ,  3 }  (
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  /\  ( k  =/=  2  ->  ( P `  k )  =/=  ( P `  2 )
) ) )  <->  ( (
( ( 0  =/=  1  ->  ( P `  0 )  =/=  ( P `  1
) )  /\  (
0  =/=  2  -> 
( P `  0
)  =/=  ( P `
 2 ) ) )  /\  ( ( 1  =/=  1  -> 
( P `  1
)  =/=  ( P `
 1 ) )  /\  ( 1  =/=  2  ->  ( P `  1 )  =/=  ( P `  2
) ) ) )  /\  ( ( ( 2  =/=  1  -> 
( P `  2
)  =/=  ( P `
 1 ) )  /\  ( 2  =/=  2  ->  ( P `  2 )  =/=  ( P `  2
) ) )  /\  ( ( 3  =/=  1  ->  ( P `  3 )  =/=  ( P `  1
) )  /\  (
3  =/=  2  -> 
( P `  3
)  =/=  ( P `
 2 ) ) ) ) ) )
10766, 67, 1063bitri 286 . . 3  |-  ( A. k  e.  ( 0..^ ( # `  P
) ) ( ( k  =/=  1  -> 
( P `  k
)  =/=  ( P `
 1 ) )  /\  ( k  =/=  2  ->  ( P `  k )  =/=  ( P `  2 )
) )  <->  ( (
( ( 0  =/=  1  ->  ( P `  0 )  =/=  ( P `  1
) )  /\  (
0  =/=  2  -> 
( P `  0
)  =/=  ( P `
 2 ) ) )  /\  ( ( 1  =/=  1  -> 
( P `  1
)  =/=  ( P `
 1 ) )  /\  ( 1  =/=  2  ->  ( P `  1 )  =/=  ( P `  2
) ) ) )  /\  ( ( ( 2  =/=  1  -> 
( P `  2
)  =/=  ( P `
 1 ) )  /\  ( 2  =/=  2  ->  ( P `  2 )  =/=  ( P `  2
) ) )  /\  ( ( 3  =/=  1  ->  ( P `  3 )  =/=  ( P `  1
) )  /\  (
3  =/=  2  -> 
( P `  3
)  =/=  ( P `
 2 ) ) ) ) ) )
10859, 107sylibr 224 . 2  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  P
) ) ( ( k  =/=  1  -> 
( P `  k
)  =/=  ( P `
 1 ) )  /\  ( k  =/=  2  ->  ( P `  k )  =/=  ( P `  2 )
) ) )
1092fveq2i 6194 . . . . . . . 8  |-  ( # `  F )  =  (
# `  <" J K L "> )
110 s3len 13639 . . . . . . . 8  |-  ( # `  <" J K L "> )  =  3
111109, 110eqtri 2644 . . . . . . 7  |-  ( # `  F )  =  3
112111oveq2i 6661 . . . . . 6  |-  ( 1..^ ( # `  F
) )  =  ( 1..^ 3 )
113 fzo13pr 12552 . . . . . 6  |-  ( 1..^ 3 )  =  {
1 ,  2 }
114112, 113eqtri 2644 . . . . 5  |-  ( 1..^ ( # `  F
) )  =  {
1 ,  2 }
115114raleqi 3142 . . . 4  |-  ( A. j  e.  ( 1..^ ( # `  F
) ) ( k  =/=  j  ->  ( P `  k )  =/=  ( P `  j
) )  <->  A. j  e.  { 1 ,  2 }  ( k  =/=  j  ->  ( P `  k )  =/=  ( P `  j )
) )
116 neeq2 2857 . . . . . 6  |-  ( j  =  1  ->  (
k  =/=  j  <->  k  =/=  1 ) )
117 fveq2 6191 . . . . . . 7  |-  ( j  =  1  ->  ( P `  j )  =  ( P ` 
1 ) )
118117neeq2d 2854 . . . . . 6  |-  ( j  =  1  ->  (
( P `  k
)  =/=  ( P `
 j )  <->  ( P `  k )  =/=  ( P `  1 )
) )
119116, 118imbi12d 334 . . . . 5  |-  ( j  =  1  ->  (
( k  =/=  j  ->  ( P `  k
)  =/=  ( P `
 j ) )  <-> 
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) ) ) )
120 neeq2 2857 . . . . . 6  |-  ( j  =  2  ->  (
k  =/=  j  <->  k  =/=  2 ) )
121 fveq2 6191 . . . . . . 7  |-  ( j  =  2  ->  ( P `  j )  =  ( P ` 
2 ) )
122121neeq2d 2854 . . . . . 6  |-  ( j  =  2  ->  (
( P `  k
)  =/=  ( P `
 j )  <->  ( P `  k )  =/=  ( P `  2 )
) )
123120, 122imbi12d 334 . . . . 5  |-  ( j  =  2  ->  (
( k  =/=  j  ->  ( P `  k
)  =/=  ( P `
 j ) )  <-> 
( k  =/=  2  ->  ( P `  k
)  =/=  ( P `
 2 ) ) ) )
12469, 87, 119, 123ralpr 4238 . . . 4  |-  ( A. j  e.  { 1 ,  2 }  (
k  =/=  j  -> 
( P `  k
)  =/=  ( P `
 j ) )  <-> 
( ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1 )
)  /\  ( k  =/=  2  ->  ( P `
 k )  =/=  ( P `  2
) ) ) )
125115, 124bitri 264 . . 3  |-  ( A. j  e.  ( 1..^ ( # `  F
) ) ( k  =/=  j  ->  ( P `  k )  =/=  ( P `  j
) )  <->  ( (
k  =/=  1  -> 
( P `  k
)  =/=  ( P `
 1 ) )  /\  ( k  =/=  2  ->  ( P `  k )  =/=  ( P `  2 )
) ) )
126125ralbii 2980 . 2  |-  ( A. k  e.  ( 0..^ ( # `  P
) ) A. j  e.  ( 1..^ ( # `  F ) ) ( k  =/=  j  -> 
( P `  k
)  =/=  ( P `
 j ) )  <->  A. k  e.  (
0..^ ( # `  P
) ) ( ( k  =/=  1  -> 
( P `  k
)  =/=  ( P `
 1 ) )  /\  ( k  =/=  2  ->  ( P `  k )  =/=  ( P `  2 )
) ) )
127108, 126sylibr 224 1  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  P
) ) A. j  e.  ( 1..^ ( # `  F ) ) ( k  =/=  j  -> 
( P `  k
)  =/=  ( P `
 j ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    u. cun 3572   {cpr 4179   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   2c2 11070   3c3 11071   4c4 11072  ..^cfzo 12465   #chash 13117   <"cs3 13587   <"cs4 13588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-s4 13595
This theorem is referenced by:  3pthd  27034
  Copyright terms: Public domain W3C validator