MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac2 Structured version   Visualization version   GIF version

Theorem ablfac2 18488
Description: Choose generators for each cyclic group in ablfac 18487. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
ablfac2.m · = (.g𝐺)
ablfac2.s 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
Assertion
Ref Expression
ablfac2 (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
Distinct variable groups:   𝑆,𝑟   𝑘,𝑛,𝑟,𝑤,𝐵   · ,𝑘,𝑤   𝐶,𝑘,𝑛,𝑤   𝜑,𝑘,𝑛,𝑤   𝑘,𝐺,𝑛,𝑟,𝑤
Allowed substitution hints:   𝜑(𝑟)   𝐶(𝑟)   𝑆(𝑤,𝑘,𝑛)   · (𝑛,𝑟)

Proof of Theorem ablfac2
Dummy variables 𝑠 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdf 13310 . . . . . . . 8 (𝑠 ∈ Word 𝐶𝑠:(0..^(#‘𝑠))⟶𝐶)
21ad2antlr 763 . . . . . . 7 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:(0..^(#‘𝑠))⟶𝐶)
3 fdm 6051 . . . . . . 7 (𝑠:(0..^(#‘𝑠))⟶𝐶 → dom 𝑠 = (0..^(#‘𝑠)))
42, 3syl 17 . . . . . 6 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 = (0..^(#‘𝑠)))
5 fzofi 12773 . . . . . 6 (0..^(#‘𝑠)) ∈ Fin
64, 5syl6eqel 2709 . . . . 5 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 ∈ Fin)
74feq2d 6031 . . . . . . . . . . 11 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → (𝑠:dom 𝑠𝐶𝑠:(0..^(#‘𝑠))⟶𝐶))
82, 7mpbird 247 . . . . . . . . . 10 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:dom 𝑠𝐶)
98ffvelrnda 6359 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) ∈ 𝐶)
10 oveq2 6658 . . . . . . . . . . . 12 (𝑟 = (𝑠𝑘) → (𝐺s 𝑟) = (𝐺s (𝑠𝑘)))
1110eleq1d 2686 . . . . . . . . . . 11 (𝑟 = (𝑠𝑘) → ((𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔ (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp )))
12 ablfac.c . . . . . . . . . . 11 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
1311, 12elrab2 3366 . . . . . . . . . 10 ((𝑠𝑘) ∈ 𝐶 ↔ ((𝑠𝑘) ∈ (SubGrp‘𝐺) ∧ (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp )))
1413simplbi 476 . . . . . . . . 9 ((𝑠𝑘) ∈ 𝐶 → (𝑠𝑘) ∈ (SubGrp‘𝐺))
159, 14syl 17 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) ∈ (SubGrp‘𝐺))
16 ablfac.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
1716subgss 17595 . . . . . . . 8 ((𝑠𝑘) ∈ (SubGrp‘𝐺) → (𝑠𝑘) ⊆ 𝐵)
1815, 17syl 17 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) ⊆ 𝐵)
19 inss1 3833 . . . . . . . . . . 11 (CycGrp ∩ ran pGrp ) ⊆ CycGrp
2013simprbi 480 . . . . . . . . . . . 12 ((𝑠𝑘) ∈ 𝐶 → (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp ))
219, 20syl 17 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺s (𝑠𝑘)) ∈ (CycGrp ∩ ran pGrp ))
2219, 21sseldi 3601 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺s (𝑠𝑘)) ∈ CycGrp)
23 eqid 2622 . . . . . . . . . . . 12 (Base‘(𝐺s (𝑠𝑘))) = (Base‘(𝐺s (𝑠𝑘)))
24 eqid 2622 . . . . . . . . . . . 12 (.g‘(𝐺s (𝑠𝑘))) = (.g‘(𝐺s (𝑠𝑘)))
2523, 24iscyg 18281 . . . . . . . . . . 11 ((𝐺s (𝑠𝑘)) ∈ CycGrp ↔ ((𝐺s (𝑠𝑘)) ∈ Grp ∧ ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
2625simprbi 480 . . . . . . . . . 10 ((𝐺s (𝑠𝑘)) ∈ CycGrp → ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))))
2722, 26syl 17 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))))
28 eqid 2622 . . . . . . . . . . . 12 (𝐺s (𝑠𝑘)) = (𝐺s (𝑠𝑘))
2928subgbas 17598 . . . . . . . . . . 11 ((𝑠𝑘) ∈ (SubGrp‘𝐺) → (𝑠𝑘) = (Base‘(𝐺s (𝑠𝑘))))
3015, 29syl 17 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠𝑘) = (Base‘(𝐺s (𝑠𝑘))))
3130rexeqdv 3145 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))) ↔ ∃𝑥 ∈ (Base‘(𝐺s (𝑠𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
3227, 31mpbird 247 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘))))
3315ad2antrr 762 . . . . . . . . . . . . 13 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑠𝑘) ∈ (SubGrp‘𝐺))
34 simpr 477 . . . . . . . . . . . . 13 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
35 simplr 792 . . . . . . . . . . . . 13 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ (𝑠𝑘))
36 ablfac2.m . . . . . . . . . . . . . 14 · = (.g𝐺)
3736, 28, 24subgmulg 17608 . . . . . . . . . . . . 13 (((𝑠𝑘) ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (𝑠𝑘)) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥))
3833, 34, 35, 37syl3anc 1326 . . . . . . . . . . . 12 ((((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥))
3938mpteq2dva 4744 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)))
4039rneqd 5353 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)))
4130adantr 481 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → (𝑠𝑘) = (Base‘(𝐺s (𝑠𝑘))))
4240, 41eqeq12d 2637 . . . . . . . . 9 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠𝑘)) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
4342rexbidva 3049 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) ↔ ∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺s (𝑠𝑘)))𝑥)) = (Base‘(𝐺s (𝑠𝑘)))))
4432, 43mpbird 247 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘))
45 ssrexv 3667 . . . . . . 7 ((𝑠𝑘) ⊆ 𝐵 → (∃𝑥 ∈ (𝑠𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘)))
4618, 44, 45sylc 65 . . . . . 6 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘))
4746ralrimiva 2966 . . . . 5 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∀𝑘 ∈ dom 𝑠𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘))
48 oveq2 6658 . . . . . . . . 9 (𝑥 = (𝑤𝑘) → (𝑛 · 𝑥) = (𝑛 · (𝑤𝑘)))
4948mpteq2dv 4745 . . . . . . . 8 (𝑥 = (𝑤𝑘) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
5049rneqd 5353 . . . . . . 7 (𝑥 = (𝑤𝑘) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
5150eqeq1d 2624 . . . . . 6 (𝑥 = (𝑤𝑘) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
5251ac6sfi 8204 . . . . 5 ((dom 𝑠 ∈ Fin ∧ ∀𝑘 ∈ dom 𝑠𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠𝑘)) → ∃𝑤(𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
536, 47, 52syl2anc 693 . . . 4 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
54 simprl 794 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑤:dom 𝑠𝐵)
554adantr 481 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → dom 𝑠 = (0..^(#‘𝑠)))
5655feq2d 6031 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑤:dom 𝑠𝐵𝑤:(0..^(#‘𝑠))⟶𝐵))
5754, 56mpbid 222 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑤:(0..^(#‘𝑠))⟶𝐵)
58 iswrdi 13309 . . . . . . . 8 (𝑤:(0..^(#‘𝑠))⟶𝐵𝑤 ∈ Word 𝐵)
5957, 58syl 17 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑤 ∈ Word 𝐵)
60 fdm 6051 . . . . . . . . . . . . . 14 (𝑤:(0..^(#‘𝑠))⟶𝐵 → dom 𝑤 = (0..^(#‘𝑠)))
6157, 60syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → dom 𝑤 = (0..^(#‘𝑠)))
6261, 55eqtr4d 2659 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → dom 𝑤 = dom 𝑠)
6362eleq2d 2687 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑗 ∈ dom 𝑤𝑗 ∈ dom 𝑠))
6463biimpa 501 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑤) → 𝑗 ∈ dom 𝑠)
65 simprr 796 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))
66 simpl 473 . . . . . . . . . . . . . . . . . 18 ((𝑘 = 𝑗𝑛 ∈ ℤ) → 𝑘 = 𝑗)
6766fveq2d 6195 . . . . . . . . . . . . . . . . 17 ((𝑘 = 𝑗𝑛 ∈ ℤ) → (𝑤𝑘) = (𝑤𝑗))
6867oveq2d 6666 . . . . . . . . . . . . . . . 16 ((𝑘 = 𝑗𝑛 ∈ ℤ) → (𝑛 · (𝑤𝑘)) = (𝑛 · (𝑤𝑗)))
6968mpteq2dva 4744 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
7069rneqd 5353 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
71 fveq2 6191 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑠𝑘) = (𝑠𝑗))
7270, 71eqeq12d 2637 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) = (𝑠𝑗)))
7372rspccva 3308 . . . . . . . . . . . 12 ((∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) = (𝑠𝑗))
7465, 73sylan 488 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) = (𝑠𝑗))
758adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑠:dom 𝑠𝐶)
7675ffvelrnda 6359 . . . . . . . . . . 11 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑠) → (𝑠𝑗) ∈ 𝐶)
7774, 76eqeltrd 2701 . . . . . . . . . 10 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) ∈ 𝐶)
7864, 77syldan 487 . . . . . . . . 9 (((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) ∧ 𝑗 ∈ dom 𝑤) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))) ∈ 𝐶)
79 ablfac2.s . . . . . . . . . 10 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))))
80 fveq2 6191 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑤𝑘) = (𝑤𝑗))
8180oveq2d 6666 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑛 · (𝑤𝑘)) = (𝑛 · (𝑤𝑗)))
8281mpteq2dv 4745 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
8382rneqd 5353 . . . . . . . . . . 11 (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
8483cbvmptv 4750 . . . . . . . . . 10 (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘)))) = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
8579, 84eqtri 2644 . . . . . . . . 9 𝑆 = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑗))))
8678, 85fmptd 6385 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑆:dom 𝑤𝐶)
87 simprl 794 . . . . . . . . . 10 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝐺dom DProd 𝑠)
8887adantr 481 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝐺dom DProd 𝑠)
8962raleqdv 3144 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘) ↔ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)))
9065, 89mpbird 247 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))
91 mpteq12 4736 . . . . . . . . . . . 12 ((dom 𝑤 = dom 𝑠 ∧ ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
9262, 90, 91syl2anc 693 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
9379, 92syl5eq 2668 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑆 = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
94 dprdf 18405 . . . . . . . . . . . 12 (𝐺dom DProd 𝑠𝑠:dom 𝑠⟶(SubGrp‘𝐺))
9588, 94syl 17 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑠:dom 𝑠⟶(SubGrp‘𝐺))
9695feqmptd 6249 . . . . . . . . . 10 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑠 = (𝑘 ∈ dom 𝑠 ↦ (𝑠𝑘)))
9793, 96eqtr4d 2659 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝑆 = 𝑠)
9888, 97breqtrrd 4681 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → 𝐺dom DProd 𝑆)
9997oveq2d 6666 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝐺 DProd 𝑆) = (𝐺 DProd 𝑠))
100 simplrr 801 . . . . . . . . 9 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝐺 DProd 𝑠) = 𝐵)
10199, 100eqtrd 2656 . . . . . . . 8 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝐺 DProd 𝑆) = 𝐵)
10286, 98, 1013jca 1242 . . . . . . 7 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
10359, 102jca 554 . . . . . 6 ((((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘))) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))
104103ex 450 . . . . 5 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ((𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))))
105104eximdv 1846 . . . 4 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → (∃𝑤(𝑤:dom 𝑠𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤𝑘))) = (𝑠𝑘)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))))
10653, 105mpd 15 . . 3 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))
107 df-rex 2918 . . 3 (∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵) ↔ ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))
108106, 107sylibr 224 . 2 (((𝜑𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
109 ablfac.1 . . 3 (𝜑𝐺 ∈ Abel)
110 ablfac.2 . . 3 (𝜑𝐵 ∈ Fin)
11116, 12, 109, 110ablfac 18487 . 2 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
112108, 111r19.29a 3078 1 (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤𝐶𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  {crab 2916  cin 3573  wss 3574   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  0cc0 9936  cz 11377  ..^cfzo 12465  #chash 13117  Word cword 13291  Basecbs 15857  s cress 15858  Grpcgrp 17422  .gcmg 17540  SubGrpcsubg 17588   pGrp cpgp 17946  Abelcabl 18194  CycGrpccyg 18279   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ghm 17658  df-gim 17701  df-ga 17723  df-cntz 17750  df-oppg 17776  df-od 17948  df-gex 17949  df-pgp 17950  df-lsm 18051  df-pj1 18052  df-cmn 18195  df-abl 18196  df-cyg 18280  df-dprd 18394
This theorem is referenced by:  dchrpt  24992
  Copyright terms: Public domain W3C validator