Step | Hyp | Ref
| Expression |
1 | | wrdf 13310 |
. . . . . . . 8
⊢ (𝑠 ∈ Word 𝐶 → 𝑠:(0..^(#‘𝑠))⟶𝐶) |
2 | 1 | ad2antlr 763 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:(0..^(#‘𝑠))⟶𝐶) |
3 | | fdm 6051 |
. . . . . . 7
⊢ (𝑠:(0..^(#‘𝑠))⟶𝐶 → dom 𝑠 = (0..^(#‘𝑠))) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 = (0..^(#‘𝑠))) |
5 | | fzofi 12773 |
. . . . . 6
⊢
(0..^(#‘𝑠))
∈ Fin |
6 | 4, 5 | syl6eqel 2709 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → dom 𝑠 ∈ Fin) |
7 | 4 | feq2d 6031 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → (𝑠:dom 𝑠⟶𝐶 ↔ 𝑠:(0..^(#‘𝑠))⟶𝐶)) |
8 | 2, 7 | mpbird 247 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝑠:dom 𝑠⟶𝐶) |
9 | 8 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠‘𝑘) ∈ 𝐶) |
10 | | oveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑟 = (𝑠‘𝑘) → (𝐺 ↾s 𝑟) = (𝐺 ↾s (𝑠‘𝑘))) |
11 | 10 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝑠‘𝑘) → ((𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp ) ↔
(𝐺 ↾s
(𝑠‘𝑘)) ∈ (CycGrp ∩ ran pGrp
))) |
12 | | ablfac.c |
. . . . . . . . . . 11
⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp
)} |
13 | 11, 12 | elrab2 3366 |
. . . . . . . . . 10
⊢ ((𝑠‘𝑘) ∈ 𝐶 ↔ ((𝑠‘𝑘) ∈ (SubGrp‘𝐺) ∧ (𝐺 ↾s (𝑠‘𝑘)) ∈ (CycGrp ∩ ran pGrp
))) |
14 | 13 | simplbi 476 |
. . . . . . . . 9
⊢ ((𝑠‘𝑘) ∈ 𝐶 → (𝑠‘𝑘) ∈ (SubGrp‘𝐺)) |
15 | 9, 14 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠‘𝑘) ∈ (SubGrp‘𝐺)) |
16 | | ablfac.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
17 | 16 | subgss 17595 |
. . . . . . . 8
⊢ ((𝑠‘𝑘) ∈ (SubGrp‘𝐺) → (𝑠‘𝑘) ⊆ 𝐵) |
18 | 15, 17 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠‘𝑘) ⊆ 𝐵) |
19 | | inss1 3833 |
. . . . . . . . . . 11
⊢ (CycGrp
∩ ran pGrp ) ⊆ CycGrp |
20 | 13 | simprbi 480 |
. . . . . . . . . . . 12
⊢ ((𝑠‘𝑘) ∈ 𝐶 → (𝐺 ↾s (𝑠‘𝑘)) ∈ (CycGrp ∩ ran pGrp
)) |
21 | 9, 20 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺 ↾s (𝑠‘𝑘)) ∈ (CycGrp ∩ ran pGrp
)) |
22 | 19, 21 | sseldi 3601 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝐺 ↾s (𝑠‘𝑘)) ∈ CycGrp) |
23 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(Base‘(𝐺
↾s (𝑠‘𝑘))) = (Base‘(𝐺 ↾s (𝑠‘𝑘))) |
24 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(.g‘(𝐺 ↾s (𝑠‘𝑘))) = (.g‘(𝐺 ↾s (𝑠‘𝑘))) |
25 | 23, 24 | iscyg 18281 |
. . . . . . . . . . 11
⊢ ((𝐺 ↾s (𝑠‘𝑘)) ∈ CycGrp ↔ ((𝐺 ↾s (𝑠‘𝑘)) ∈ Grp ∧ ∃𝑥 ∈ (Base‘(𝐺 ↾s (𝑠‘𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))))) |
26 | 25 | simprbi 480 |
. . . . . . . . . 10
⊢ ((𝐺 ↾s (𝑠‘𝑘)) ∈ CycGrp → ∃𝑥 ∈ (Base‘(𝐺 ↾s (𝑠‘𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
27 | 22, 26 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (Base‘(𝐺 ↾s (𝑠‘𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
28 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝐺 ↾s (𝑠‘𝑘)) = (𝐺 ↾s (𝑠‘𝑘)) |
29 | 28 | subgbas 17598 |
. . . . . . . . . . 11
⊢ ((𝑠‘𝑘) ∈ (SubGrp‘𝐺) → (𝑠‘𝑘) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
30 | 15, 29 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (𝑠‘𝑘) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
31 | 30 | rexeqdv 3145 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))) ↔ ∃𝑥 ∈ (Base‘(𝐺 ↾s (𝑠‘𝑘)))ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))))) |
32 | 27, 31 | mpbird 247 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
33 | 15 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑠‘𝑘) ∈ (SubGrp‘𝐺)) |
34 | | simpr 477 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) |
35 | | simplr 792 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ (𝑠‘𝑘)) |
36 | | ablfac2.m |
. . . . . . . . . . . . . 14
⊢ · =
(.g‘𝐺) |
37 | 36, 28, 24 | subgmulg 17608 |
. . . . . . . . . . . . 13
⊢ (((𝑠‘𝑘) ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝑥 ∈ (𝑠‘𝑘)) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) |
38 | 33, 34, 35, 37 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑥) = (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) |
39 | 38 | mpteq2dva 4744 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥))) |
40 | 39 | rneqd 5353 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥))) |
41 | 30 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) → (𝑠‘𝑘) = (Base‘(𝐺 ↾s (𝑠‘𝑘)))) |
42 | 40, 41 | eqeq12d 2637 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) ∧ 𝑥 ∈ (𝑠‘𝑘)) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))))) |
43 | 42 | rexbidva 3049 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → (∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘) ↔ ∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘(𝐺 ↾s (𝑠‘𝑘)))𝑥)) = (Base‘(𝐺 ↾s (𝑠‘𝑘))))) |
44 | 32, 43 | mpbird 247 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘)) |
45 | | ssrexv 3667 |
. . . . . . 7
⊢ ((𝑠‘𝑘) ⊆ 𝐵 → (∃𝑥 ∈ (𝑠‘𝑘)ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘) → ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘))) |
46 | 18, 44, 45 | sylc 65 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ 𝑘 ∈ dom 𝑠) → ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘)) |
47 | 46 | ralrimiva 2966 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∀𝑘 ∈ dom 𝑠∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘)) |
48 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = (𝑤‘𝑘) → (𝑛 · 𝑥) = (𝑛 · (𝑤‘𝑘))) |
49 | 48 | mpteq2dv 4745 |
. . . . . . . 8
⊢ (𝑥 = (𝑤‘𝑘) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) |
50 | 49 | rneqd 5353 |
. . . . . . 7
⊢ (𝑥 = (𝑤‘𝑘) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) |
51 | 50 | eqeq1d 2624 |
. . . . . 6
⊢ (𝑥 = (𝑤‘𝑘) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) |
52 | 51 | ac6sfi 8204 |
. . . . 5
⊢ ((dom
𝑠 ∈ Fin ∧
∀𝑘 ∈ dom 𝑠∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = (𝑠‘𝑘)) → ∃𝑤(𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) |
53 | 6, 47, 52 | syl2anc 693 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) |
54 | | simprl 794 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑤:dom 𝑠⟶𝐵) |
55 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → dom 𝑠 = (0..^(#‘𝑠))) |
56 | 55 | feq2d 6031 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑤:dom 𝑠⟶𝐵 ↔ 𝑤:(0..^(#‘𝑠))⟶𝐵)) |
57 | 54, 56 | mpbid 222 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑤:(0..^(#‘𝑠))⟶𝐵) |
58 | | iswrdi 13309 |
. . . . . . . 8
⊢ (𝑤:(0..^(#‘𝑠))⟶𝐵 → 𝑤 ∈ Word 𝐵) |
59 | 57, 58 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑤 ∈ Word 𝐵) |
60 | | fdm 6051 |
. . . . . . . . . . . . . 14
⊢ (𝑤:(0..^(#‘𝑠))⟶𝐵 → dom 𝑤 = (0..^(#‘𝑠))) |
61 | 57, 60 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → dom 𝑤 = (0..^(#‘𝑠))) |
62 | 61, 55 | eqtr4d 2659 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → dom 𝑤 = dom 𝑠) |
63 | 62 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑗 ∈ dom 𝑤 ↔ 𝑗 ∈ dom 𝑠)) |
64 | 63 | biimpa 501 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑤) → 𝑗 ∈ dom 𝑠) |
65 | | simprr 796 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) |
66 | | simpl 473 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 = 𝑗 ∧ 𝑛 ∈ ℤ) → 𝑘 = 𝑗) |
67 | 66 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 = 𝑗 ∧ 𝑛 ∈ ℤ) → (𝑤‘𝑘) = (𝑤‘𝑗)) |
68 | 67 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 = 𝑗 ∧ 𝑛 ∈ ℤ) → (𝑛 · (𝑤‘𝑘)) = (𝑛 · (𝑤‘𝑗))) |
69 | 68 | mpteq2dva 4744 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
70 | 69 | rneqd 5353 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
71 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝑠‘𝑘) = (𝑠‘𝑗)) |
72 | 70, 71 | eqeq12d 2637 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) = (𝑠‘𝑗))) |
73 | 72 | rspccva 3308 |
. . . . . . . . . . . 12
⊢
((∀𝑘 ∈
dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) = (𝑠‘𝑗)) |
74 | 65, 73 | sylan 488 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) = (𝑠‘𝑗)) |
75 | 8 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑠:dom 𝑠⟶𝐶) |
76 | 75 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑠) → (𝑠‘𝑗) ∈ 𝐶) |
77 | 74, 76 | eqeltrd 2701 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑠) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) ∈ 𝐶) |
78 | 64, 77 | syldan 487 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) ∧ 𝑗 ∈ dom 𝑤) → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗))) ∈ 𝐶) |
79 | | ablfac2.s |
. . . . . . . . . 10
⊢ 𝑆 = (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) |
80 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝑤‘𝑘) = (𝑤‘𝑗)) |
81 | 80 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑛 · (𝑤‘𝑘)) = (𝑛 · (𝑤‘𝑗))) |
82 | 81 | mpteq2dv 4745 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
83 | 82 | rneqd 5353 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
84 | 83 | cbvmptv 4750 |
. . . . . . . . . 10
⊢ (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
85 | 79, 84 | eqtri 2644 |
. . . . . . . . 9
⊢ 𝑆 = (𝑗 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑗)))) |
86 | 78, 85 | fmptd 6385 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑆:dom 𝑤⟶𝐶) |
87 | | simprl 794 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → 𝐺dom DProd 𝑠) |
88 | 87 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝐺dom DProd 𝑠) |
89 | 62 | raleqdv 3144 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘) ↔ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) |
90 | 65, 89 | mpbird 247 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) |
91 | | mpteq12 4736 |
. . . . . . . . . . . 12
⊢ ((dom
𝑤 = dom 𝑠 ∧ ∀𝑘 ∈ dom 𝑤ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠‘𝑘))) |
92 | 62, 90, 91 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑘 ∈ dom 𝑤 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘)))) = (𝑘 ∈ dom 𝑠 ↦ (𝑠‘𝑘))) |
93 | 79, 92 | syl5eq 2668 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑆 = (𝑘 ∈ dom 𝑠 ↦ (𝑠‘𝑘))) |
94 | | dprdf 18405 |
. . . . . . . . . . . 12
⊢ (𝐺dom DProd 𝑠 → 𝑠:dom 𝑠⟶(SubGrp‘𝐺)) |
95 | 88, 94 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑠:dom 𝑠⟶(SubGrp‘𝐺)) |
96 | 95 | feqmptd 6249 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑠 = (𝑘 ∈ dom 𝑠 ↦ (𝑠‘𝑘))) |
97 | 93, 96 | eqtr4d 2659 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝑆 = 𝑠) |
98 | 88, 97 | breqtrrd 4681 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → 𝐺dom DProd 𝑆) |
99 | 97 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝐺 DProd 𝑆) = (𝐺 DProd 𝑠)) |
100 | | simplrr 801 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝐺 DProd 𝑠) = 𝐵) |
101 | 99, 100 | eqtrd 2656 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝐺 DProd 𝑆) = 𝐵) |
102 | 86, 98, 101 | 3jca 1242 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)) |
103 | 59, 102 | jca 554 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) ∧ (𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘))) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))) |
104 | 103 | ex 450 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ((𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) → (𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))) |
105 | 104 | eximdv 1846 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → (∃𝑤(𝑤:dom 𝑠⟶𝐵 ∧ ∀𝑘 ∈ dom 𝑠ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑤‘𝑘))) = (𝑠‘𝑘)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)))) |
106 | 53, 105 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))) |
107 | | df-rex 2918 |
. . 3
⊢
(∃𝑤 ∈
Word 𝐵(𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵) ↔ ∃𝑤(𝑤 ∈ Word 𝐵 ∧ (𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵))) |
108 | 106, 107 | sylibr 224 |
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ Word 𝐶) ∧ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)) |
109 | | ablfac.1 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Abel) |
110 | | ablfac.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
111 | 16, 12, 109, 110 | ablfac 18487 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) |
112 | 108, 111 | r19.29a 3078 |
1
⊢ (𝜑 → ∃𝑤 ∈ Word 𝐵(𝑆:dom 𝑤⟶𝐶 ∧ 𝐺dom DProd 𝑆 ∧ (𝐺 DProd 𝑆) = 𝐵)) |