MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshimadifsn Structured version   Visualization version   Unicode version

Theorem cshimadifsn 13575
Description: The image of a cyclically shifted word under its domain without its left bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
cshimadifsn  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( F "
( ( 0..^ N )  \  { J } ) )  =  ( ( F cyclShift  J )
" ( 1..^ N ) ) )

Proof of Theorem cshimadifsn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdfn 13319 . . . . . 6  |-  ( F  e. Word  S  ->  F  Fn  ( 0..^ ( # `  F ) ) )
2 fnfun 5988 . . . . . 6  |-  ( F  Fn  ( 0..^ (
# `  F )
)  ->  Fun  F )
31, 2syl 17 . . . . 5  |-  ( F  e. Word  S  ->  Fun  F )
433ad2ant1 1082 . . . 4  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  Fun  F )
5 wrddm 13312 . . . . . 6  |-  ( F  e. Word  S  ->  dom  F  =  ( 0..^ (
# `  F )
) )
6 difssd 3738 . . . . . . . . 9  |-  ( ( dom  F  =  ( 0..^ ( # `  F
) )  /\  N  =  ( # `  F
) )  ->  (
( 0..^ ( # `  F ) )  \  { J } )  C_  ( 0..^ ( # `  F
) ) )
7 oveq2 6658 . . . . . . . . . . 11  |-  ( N  =  ( # `  F
)  ->  ( 0..^ N )  =  ( 0..^ ( # `  F
) ) )
87difeq1d 3727 . . . . . . . . . 10  |-  ( N  =  ( # `  F
)  ->  ( (
0..^ N )  \  { J } )  =  ( ( 0..^ (
# `  F )
)  \  { J } ) )
98adantl 482 . . . . . . . . 9  |-  ( ( dom  F  =  ( 0..^ ( # `  F
) )  /\  N  =  ( # `  F
) )  ->  (
( 0..^ N ) 
\  { J }
)  =  ( ( 0..^ ( # `  F
) )  \  { J } ) )
10 simpl 473 . . . . . . . . 9  |-  ( ( dom  F  =  ( 0..^ ( # `  F
) )  /\  N  =  ( # `  F
) )  ->  dom  F  =  ( 0..^ (
# `  F )
) )
116, 9, 103sstr4d 3648 . . . . . . . 8  |-  ( ( dom  F  =  ( 0..^ ( # `  F
) )  /\  N  =  ( # `  F
) )  ->  (
( 0..^ N ) 
\  { J }
)  C_  dom  F )
1211a1d 25 . . . . . . 7  |-  ( ( dom  F  =  ( 0..^ ( # `  F
) )  /\  N  =  ( # `  F
) )  ->  ( J  e.  ( 0..^ N )  ->  (
( 0..^ N ) 
\  { J }
)  C_  dom  F ) )
1312ex 450 . . . . . 6  |-  ( dom 
F  =  ( 0..^ ( # `  F
) )  ->  ( N  =  ( # `  F
)  ->  ( J  e.  ( 0..^ N )  ->  ( ( 0..^ N )  \  { J } )  C_  dom  F ) ) )
145, 13syl 17 . . . . 5  |-  ( F  e. Word  S  ->  ( N  =  ( # `  F
)  ->  ( J  e.  ( 0..^ N )  ->  ( ( 0..^ N )  \  { J } )  C_  dom  F ) ) )
15143imp 1256 . . . 4  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( ( 0..^ N )  \  { J } )  C_  dom  F )
164, 15jca 554 . . 3  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( Fun  F  /\  ( ( 0..^ N )  \  { J } )  C_  dom  F ) )
17 dfimafn 6245 . . 3  |-  ( ( Fun  F  /\  (
( 0..^ N ) 
\  { J }
)  C_  dom  F )  ->  ( F "
( ( 0..^ N )  \  { J } ) )  =  { z  |  E. x  e.  ( (
0..^ N )  \  { J } ) ( F `  x )  =  z } )
1816, 17syl 17 . 2  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( F "
( ( 0..^ N )  \  { J } ) )  =  { z  |  E. x  e.  ( (
0..^ N )  \  { J } ) ( F `  x )  =  z } )
19 modsumfzodifsn 12743 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  y  e.  ( 1..^ N ) )  ->  ( (
y  +  J )  mod  N )  e.  ( ( 0..^ N )  \  { J } ) )
20193ad2antl3 1225 . . . . . 6  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  y  e.  ( 1..^ N ) )  -> 
( ( y  +  J )  mod  N
)  e.  ( ( 0..^ N )  \  { J } ) )
21 oveq2 6658 . . . . . . . . . 10  |-  ( (
# `  F )  =  N  ->  ( ( y  +  J )  mod  ( # `  F
) )  =  ( ( y  +  J
)  mod  N )
)
2221eqcoms 2630 . . . . . . . . 9  |-  ( N  =  ( # `  F
)  ->  ( (
y  +  J )  mod  ( # `  F
) )  =  ( ( y  +  J
)  mod  N )
)
2322eleq1d 2686 . . . . . . . 8  |-  ( N  =  ( # `  F
)  ->  ( (
( y  +  J
)  mod  ( # `  F
) )  e.  ( ( 0..^ N ) 
\  { J }
)  <->  ( ( y  +  J )  mod 
N )  e.  ( ( 0..^ N ) 
\  { J }
) ) )
24233ad2ant2 1083 . . . . . . 7  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( ( ( y  +  J )  mod  ( # `  F
) )  e.  ( ( 0..^ N ) 
\  { J }
)  <->  ( ( y  +  J )  mod 
N )  e.  ( ( 0..^ N ) 
\  { J }
) ) )
2524adantr 481 . . . . . 6  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  y  e.  ( 1..^ N ) )  -> 
( ( ( y  +  J )  mod  ( # `  F
) )  e.  ( ( 0..^ N ) 
\  { J }
)  <->  ( ( y  +  J )  mod 
N )  e.  ( ( 0..^ N ) 
\  { J }
) ) )
2620, 25mpbird 247 . . . . 5  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  y  e.  ( 1..^ N ) )  -> 
( ( y  +  J )  mod  ( # `
 F ) )  e.  ( ( 0..^ N )  \  { J } ) )
27 modfzo0difsn 12742 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  x  e.  ( ( 0..^ N )  \  { J } ) )  ->  E. y  e.  (
1..^ N ) x  =  ( ( y  +  J )  mod 
N ) )
28273ad2antl3 1225 . . . . . 6  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  x  e.  ( (
0..^ N )  \  { J } ) )  ->  E. y  e.  ( 1..^ N ) x  =  ( ( y  +  J )  mod 
N ) )
29 oveq2 6658 . . . . . . . . . . 11  |-  ( N  =  ( # `  F
)  ->  ( (
y  +  J )  mod  N )  =  ( ( y  +  J )  mod  ( # `
 F ) ) )
3029eqcomd 2628 . . . . . . . . . 10  |-  ( N  =  ( # `  F
)  ->  ( (
y  +  J )  mod  ( # `  F
) )  =  ( ( y  +  J
)  mod  N )
)
3130eqeq2d 2632 . . . . . . . . 9  |-  ( N  =  ( # `  F
)  ->  ( x  =  ( ( y  +  J )  mod  ( # `  F
) )  <->  x  =  ( ( y  +  J )  mod  N
) ) )
3231rexbidv 3052 . . . . . . . 8  |-  ( N  =  ( # `  F
)  ->  ( E. y  e.  ( 1..^ N ) x  =  ( ( y  +  J )  mod  ( # `
 F ) )  <->  E. y  e.  (
1..^ N ) x  =  ( ( y  +  J )  mod 
N ) ) )
33323ad2ant2 1083 . . . . . . 7  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( E. y  e.  ( 1..^ N ) x  =  ( ( y  +  J )  mod  ( # `  F
) )  <->  E. y  e.  ( 1..^ N ) x  =  ( ( y  +  J )  mod  N ) ) )
3433adantr 481 . . . . . 6  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  x  e.  ( (
0..^ N )  \  { J } ) )  ->  ( E. y  e.  ( 1..^ N ) x  =  ( ( y  +  J )  mod  ( # `  F
) )  <->  E. y  e.  ( 1..^ N ) x  =  ( ( y  +  J )  mod  N ) ) )
3528, 34mpbird 247 . . . . 5  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  x  e.  ( (
0..^ N )  \  { J } ) )  ->  E. y  e.  ( 1..^ N ) x  =  ( ( y  +  J )  mod  ( # `  F
) ) )
36 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( ( y  +  J )  mod  ( # `  F
) )  ->  ( F `  x )  =  ( F `  ( ( y  +  J )  mod  ( # `
 F ) ) ) )
37363ad2ant3 1084 . . . . . . 7  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  y  e.  ( 1..^ N )  /\  x  =  ( ( y  +  J )  mod  ( # `  F
) ) )  -> 
( F `  x
)  =  ( F `
 ( ( y  +  J )  mod  ( # `  F
) ) ) )
38 simpl1 1064 . . . . . . . . 9  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  y  e.  ( 1..^ N ) )  ->  F  e. Word  S )
39 elfzoelz 12470 . . . . . . . . . . 11  |-  ( J  e.  ( 0..^ N )  ->  J  e.  ZZ )
40393ad2ant3 1084 . . . . . . . . . 10  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  J  e.  ZZ )
4140adantr 481 . . . . . . . . 9  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  y  e.  ( 1..^ N ) )  ->  J  e.  ZZ )
42 oveq2 6658 . . . . . . . . . . . . 13  |-  ( N  =  ( # `  F
)  ->  ( 1..^ N )  =  ( 1..^ ( # `  F
) ) )
4342eleq2d 2687 . . . . . . . . . . . 12  |-  ( N  =  ( # `  F
)  ->  ( y  e.  ( 1..^ N )  <-> 
y  e.  ( 1..^ ( # `  F
) ) ) )
44 fzo0ss1 12498 . . . . . . . . . . . . 13  |-  ( 1..^ ( # `  F
) )  C_  (
0..^ ( # `  F
) )
4544sseli 3599 . . . . . . . . . . . 12  |-  ( y  e.  ( 1..^ (
# `  F )
)  ->  y  e.  ( 0..^ ( # `  F
) ) )
4643, 45syl6bi 243 . . . . . . . . . . 11  |-  ( N  =  ( # `  F
)  ->  ( y  e.  ( 1..^ N )  ->  y  e.  ( 0..^ ( # `  F
) ) ) )
47463ad2ant2 1083 . . . . . . . . . 10  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( y  e.  ( 1..^ N )  ->  y  e.  ( 0..^ ( # `  F
) ) ) )
4847imp 445 . . . . . . . . 9  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  y  e.  ( 1..^ N ) )  -> 
y  e.  ( 0..^ ( # `  F
) ) )
49 cshwidxmod 13549 . . . . . . . . . 10  |-  ( ( F  e. Word  S  /\  J  e.  ZZ  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( F cyclShift  J ) `  y
)  =  ( F `
 ( ( y  +  J )  mod  ( # `  F
) ) ) )
5049eqcomd 2628 . . . . . . . . 9  |-  ( ( F  e. Word  S  /\  J  e.  ZZ  /\  y  e.  ( 0..^ ( # `  F ) ) )  ->  ( F `  ( ( y  +  J )  mod  ( # `
 F ) ) )  =  ( ( F cyclShift  J ) `  y
) )
5138, 41, 48, 50syl3anc 1326 . . . . . . . 8  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  y  e.  ( 1..^ N ) )  -> 
( F `  (
( y  +  J
)  mod  ( # `  F
) ) )  =  ( ( F cyclShift  J ) `
 y ) )
52513adant3 1081 . . . . . . 7  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  y  e.  ( 1..^ N )  /\  x  =  ( ( y  +  J )  mod  ( # `  F
) ) )  -> 
( F `  (
( y  +  J
)  mod  ( # `  F
) ) )  =  ( ( F cyclShift  J ) `
 y ) )
5337, 52eqtrd 2656 . . . . . 6  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  y  e.  ( 1..^ N )  /\  x  =  ( ( y  +  J )  mod  ( # `  F
) ) )  -> 
( F `  x
)  =  ( ( F cyclShift  J ) `  y
) )
5453eqeq1d 2624 . . . . 5  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  y  e.  ( 1..^ N )  /\  x  =  ( ( y  +  J )  mod  ( # `  F
) ) )  -> 
( ( F `  x )  =  z  <-> 
( ( F cyclShift  J ) `
 y )  =  z ) )
5526, 35, 54rexxfrd2 4885 . . . 4  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( E. x  e.  ( ( 0..^ N )  \  { J } ) ( F `
 x )  =  z  <->  E. y  e.  ( 1..^ N ) ( ( F cyclShift  J ) `  y )  =  z ) )
5655abbidv 2741 . . 3  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  { z  |  E. x  e.  ( ( 0..^ N ) 
\  { J }
) ( F `  x )  =  z }  =  { z  |  E. y  e.  ( 1..^ N ) ( ( F cyclShift  J ) `
 y )  =  z } )
5739anim2i 593 . . . . . . . 8  |-  ( ( F  e. Word  S  /\  J  e.  ( 0..^ N ) )  -> 
( F  e. Word  S  /\  J  e.  ZZ ) )
58573adant2 1080 . . . . . . 7  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( F  e. Word  S  /\  J  e.  ZZ ) )
59 cshwfn 13547 . . . . . . 7  |-  ( ( F  e. Word  S  /\  J  e.  ZZ )  ->  ( F cyclShift  J )  Fn  ( 0..^ ( # `  F ) ) )
6058, 59syl 17 . . . . . 6  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( F cyclShift  J )  Fn  ( 0..^ (
# `  F )
) )
61 fnfun 5988 . . . . . . . 8  |-  ( ( F cyclShift  J )  Fn  (
0..^ ( # `  F
) )  ->  Fun  ( F cyclShift  J ) )
6261adantl 482 . . . . . . 7  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  ( F cyclShift  J )  Fn  ( 0..^ ( # `  F ) ) )  ->  Fun  ( F cyclShift  J ) )
6342, 44syl6eqss 3655 . . . . . . . . . 10  |-  ( N  =  ( # `  F
)  ->  ( 1..^ N )  C_  (
0..^ ( # `  F
) ) )
64633ad2ant2 1083 . . . . . . . . 9  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( 1..^ N )  C_  ( 0..^ ( # `  F
) ) )
6564adantr 481 . . . . . . . 8  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  ( F cyclShift  J )  Fn  ( 0..^ ( # `  F ) ) )  ->  ( 1..^ N )  C_  ( 0..^ ( # `  F
) ) )
66 fndm 5990 . . . . . . . . 9  |-  ( ( F cyclShift  J )  Fn  (
0..^ ( # `  F
) )  ->  dom  ( F cyclShift  J )  =  ( 0..^ ( # `  F ) ) )
6766adantl 482 . . . . . . . 8  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  ( F cyclShift  J )  Fn  ( 0..^ ( # `  F ) ) )  ->  dom  ( F cyclShift  J )  =  ( 0..^ ( # `  F
) ) )
6865, 67sseqtr4d 3642 . . . . . . 7  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  ( F cyclShift  J )  Fn  ( 0..^ ( # `  F ) ) )  ->  ( 1..^ N )  C_  dom  ( F cyclShift  J ) )
6962, 68jca 554 . . . . . 6  |-  ( ( ( F  e. Word  S  /\  N  =  ( # `
 F )  /\  J  e.  ( 0..^ N ) )  /\  ( F cyclShift  J )  Fn  ( 0..^ ( # `  F ) ) )  ->  ( Fun  ( F cyclShift  J )  /\  (
1..^ N )  C_  dom  ( F cyclShift  J )
) )
7060, 69mpdan 702 . . . . 5  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( Fun  ( F cyclShift  J )  /\  (
1..^ N )  C_  dom  ( F cyclShift  J )
) )
71 dfimafn 6245 . . . . 5  |-  ( ( Fun  ( F cyclShift  J )  /\  ( 1..^ N )  C_  dom  ( F cyclShift  J ) )  -> 
( ( F cyclShift  J )
" ( 1..^ N ) )  =  {
z  |  E. y  e.  ( 1..^ N ) ( ( F cyclShift  J ) `
 y )  =  z } )
7270, 71syl 17 . . . 4  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( ( F cyclShift  J ) " (
1..^ N ) )  =  { z  |  E. y  e.  ( 1..^ N ) ( ( F cyclShift  J ) `  y )  =  z } )
7372eqcomd 2628 . . 3  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  { z  |  E. y  e.  ( 1..^ N ) ( ( F cyclShift  J ) `  y )  =  z }  =  ( ( F cyclShift  J ) " (
1..^ N ) ) )
7456, 73eqtrd 2656 . 2  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  { z  |  E. x  e.  ( ( 0..^ N ) 
\  { J }
) ( F `  x )  =  z }  =  ( ( F cyclShift  J ) " (
1..^ N ) ) )
7518, 74eqtrd 2656 1  |-  ( ( F  e. Word  S  /\  N  =  ( # `  F
)  /\  J  e.  ( 0..^ N ) )  ->  ( F "
( ( 0..^ N )  \  { J } ) )  =  ( ( F cyclShift  J )
" ( 1..^ N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913    \ cdif 3571    C_ wss 3574   {csn 4177   dom cdm 5114   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   ZZcz 11377  ..^cfzo 12465    mod cmo 12668   #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  cshimadifsn0  13576
  Copyright terms: Public domain W3C validator