Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1dimatlem Structured version   Visualization version   GIF version

Theorem dih1dimatlem 36618
Description: Lemma for dih1dimat 36619. (Contributed by NM, 10-Apr-2014.)
Hypotheses
Ref Expression
dih1dimat.h 𝐻 = (LHyp‘𝐾)
dih1dimat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dih1dimat.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dih1dimat.a 𝐴 = (LSAtoms‘𝑈)
dih1dimat.b 𝐵 = (Base‘𝐾)
dih1dimat.l = (le‘𝐾)
dih1dimat.c 𝐶 = (Atoms‘𝐾)
dih1dimat.p 𝑃 = ((oc‘𝐾)‘𝑊)
dih1dimat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dih1dimat.r 𝑅 = ((trL‘𝐾)‘𝑊)
dih1dimat.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dih1dimat.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dih1dimat.d 𝐹 = (Scalar‘𝑈)
dih1dimat.j 𝐽 = (invr𝐹)
dih1dimat.v 𝑉 = (Base‘𝑈)
dih1dimat.m · = ( ·𝑠𝑈)
dih1dimat.s 𝑆 = (LSubSp‘𝑈)
dih1dimat.n 𝑁 = (LSpan‘𝑈)
dih1dimat.z 0 = (0g𝑈)
dih1dimat.g 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
Assertion
Ref Expression
dih1dimatlem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → 𝐷 ∈ ran 𝐼)
Distinct variable groups:   ,   𝐵,   𝑓,𝑠,𝐸   𝐶,   ,𝐽   𝑓,𝑁,𝑠   𝑓,,𝐾,𝑠   𝑇,𝑓,,𝑠   𝑈,𝑓,,𝑠   𝑓,𝐻,,𝑠   𝑓,𝑉,𝑠   𝑓,𝑊,,𝑠   𝑓,𝐼,𝑠   𝑃,
Allowed substitution hints:   𝐴(𝑓,,𝑠)   𝐵(𝑓,𝑠)   𝐶(𝑓,𝑠)   𝐷(𝑓,,𝑠)   𝑃(𝑓,𝑠)   𝑅(𝑓,,𝑠)   𝑆(𝑓,,𝑠)   · (𝑓,,𝑠)   𝐸()   𝐹(𝑓,,𝑠)   𝐺(𝑓,,𝑠)   𝐼()   𝐽(𝑓,𝑠)   (𝑓,𝑠)   𝑁()   𝑂(𝑓,,𝑠)   𝑉()   0 (𝑓,,𝑠)

Proof of Theorem dih1dimatlem
Dummy variables 𝑣 𝑔 𝑖 𝑝 𝑟 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dih1dimat.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dih1dimat.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 id 22 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlvec 36398 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
5 dih1dimat.v . . . . 5 𝑉 = (Base‘𝑈)
6 dih1dimat.n . . . . 5 𝑁 = (LSpan‘𝑈)
7 dih1dimat.z . . . . 5 0 = (0g𝑈)
8 dih1dimat.a . . . . 5 𝐴 = (LSAtoms‘𝑈)
95, 6, 7, 8islsat 34278 . . . 4 (𝑈 ∈ LVec → (𝐷𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣})))
104, 9syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐷𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣})))
1110biimpa 501 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}))
12 eldifi 3732 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ { 0 }) → 𝑣𝑉)
13 dih1dimat.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dih1dimat.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
151, 13, 14, 2, 5dvhvbase 36376 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 = (𝑇 × 𝐸))
1615eleq2d 2687 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑣𝑉𝑣 ∈ (𝑇 × 𝐸)))
1712, 16syl5ib 234 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑣 ∈ (𝑉 ∖ { 0 }) → 𝑣 ∈ (𝑇 × 𝐸)))
1817imp 445 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → 𝑣 ∈ (𝑇 × 𝐸))
19 simpr 477 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → 𝑠 = 𝑂)
2019opeq2d 4409 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → ⟨𝑓, 𝑠⟩ = ⟨𝑓, 𝑂⟩)
2120sneqd 4189 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → {⟨𝑓, 𝑠⟩} = {⟨𝑓, 𝑂⟩})
2221fveq2d 6195 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = (𝑁‘{⟨𝑓, 𝑂⟩}))
23 simpl 473 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 dih1dimat.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝐾)
25 dih1dimat.r . . . . . . . . . . . . . . . . 17 𝑅 = ((trL‘𝐾)‘𝑊)
2624, 1, 13, 25trlcl 35451 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
27 dih1dimat.l . . . . . . . . . . . . . . . . 17 = (le‘𝐾)
2827, 1, 13, 25trlle 35471 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) 𝑊)
29 dih1dimat.i . . . . . . . . . . . . . . . . 17 𝐼 = ((DIsoH‘𝐾)‘𝑊)
30 eqid 2622 . . . . . . . . . . . . . . . . 17 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
3124, 27, 1, 29, 30dihvalb 36526 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝑓) ∈ 𝐵 ∧ (𝑅𝑓) 𝑊)) → (𝐼‘(𝑅𝑓)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)))
3223, 26, 28, 31syl12anc 1324 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐼‘(𝑅𝑓)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)))
33 dih1dimat.o . . . . . . . . . . . . . . . 16 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
3424, 1, 13, 25, 33, 2, 30, 6dib1dim2 36457 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)) = (𝑁‘{⟨𝑓, 𝑂⟩}))
3532, 34eqtr2d 2657 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑁‘{⟨𝑓, 𝑂⟩}) = (𝐼‘(𝑅𝑓)))
36 dih1dimat.s . . . . . . . . . . . . . . . . . 18 𝑆 = (LSubSp‘𝑈)
3724, 1, 29, 2, 36dihf11 36556 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵1-1𝑆)
3837adantr 481 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐼:𝐵1-1𝑆)
39 f1fn 6102 . . . . . . . . . . . . . . . 16 (𝐼:𝐵1-1𝑆𝐼 Fn 𝐵)
4038, 39syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐼 Fn 𝐵)
41 fnfvelrn 6356 . . . . . . . . . . . . . . 15 ((𝐼 Fn 𝐵 ∧ (𝑅𝑓) ∈ 𝐵) → (𝐼‘(𝑅𝑓)) ∈ ran 𝐼)
4240, 26, 41syl2anc 693 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐼‘(𝑅𝑓)) ∈ ran 𝐼)
4335, 42eqeltrd 2701 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4443adantrr 753 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4544adantr 481 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4622, 45eqeltrd 2701 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
47 simpll 790 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐾 ∈ HL ∧ 𝑊𝐻))
48 dih1dimat.d . . . . . . . . . . . . . . . . . . 19 𝐹 = (Scalar‘𝑈)
49 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (Base‘𝐹) = (Base‘𝐹)
501, 14, 2, 48, 49dvhbase 36372 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐹) = 𝐸)
5147, 50syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (Base‘𝐹) = 𝐸)
5251rexeqdv 3145 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩)))
53 simplll 798 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
54 simpr 477 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑡𝐸)
55 opelxpi 5148 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑇𝑠𝐸) → ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))
5655ad3antlr 767 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))
57 dih1dimat.m . . . . . . . . . . . . . . . . . . . . 21 · = ( ·𝑠𝑈)
581, 13, 14, 2, 57dvhvscacl 36392 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸 ∧ ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))) → (𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸))
5953, 54, 56, 58syl12anc 1324 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸))
60 eleq1a 2696 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6159, 60syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6261rexlimdva 3031 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6362pm4.71rd 667 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩))))
64 simplrl 800 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑓𝑇)
6564adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑓𝑇)
66 simplrr 801 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑠𝐸)
6766adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑠𝐸)
681, 13, 14, 2, 57dvhopvsca 36391 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓𝑇𝑠𝐸)) → (𝑡 ·𝑓, 𝑠⟩) = ⟨(𝑡𝑓), (𝑡𝑠)⟩)
6953, 54, 65, 67, 68syl13anc 1328 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑡 ·𝑓, 𝑠⟩) = ⟨(𝑡𝑓), (𝑡𝑠)⟩)
7069eqeq2d 2632 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
7170rexbidva 3049 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
7271anbi2d 740 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩)) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
7352, 63, 723bitrd 294 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
7473abbidv 2741 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {𝑢 ∣ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)})
75 df-rab 2921 . . . . . . . . . . . . . 14 {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} = {𝑢 ∣ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)}
7674, 75syl6eqr 2674 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩})
77 ssrab2 3687 . . . . . . . . . . . . . . 15 {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ⊆ (𝑇 × 𝐸)
78 relxp 5227 . . . . . . . . . . . . . . 15 Rel (𝑇 × 𝐸)
79 relss 5206 . . . . . . . . . . . . . . 15 ({𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ⊆ (𝑇 × 𝐸) → (Rel (𝑇 × 𝐸) → Rel {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}))
8077, 78, 79mp2 9 . . . . . . . . . . . . . 14 Rel {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}
81 relopab 5247 . . . . . . . . . . . . . 14 Rel {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)}
82 vex 3203 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
83 vex 3203 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
84 eqeq1 2626 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑖 → (𝑔 = (𝑟𝐺) ↔ 𝑖 = (𝑟𝐺)))
8584anbi1d 741 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑖 → ((𝑔 = (𝑟𝐺) ∧ 𝑟𝐸) ↔ (𝑖 = (𝑟𝐺) ∧ 𝑟𝐸)))
86 fveq1 6190 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑝 → (𝑟𝐺) = (𝑝𝐺))
8786eqeq2d 2632 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑝 → (𝑖 = (𝑟𝐺) ↔ 𝑖 = (𝑝𝐺)))
88 eleq1 2689 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑝 → (𝑟𝐸𝑝𝐸))
8987, 88anbi12d 747 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑝 → ((𝑖 = (𝑟𝐺) ∧ 𝑟𝐸) ↔ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)))
9082, 83, 85, 89opelopab 4997 . . . . . . . . . . . . . . 15 (⟨𝑖, 𝑝⟩ ∈ {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)} ↔ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸))
91 dih1dimat.c . . . . . . . . . . . . . . . . . . 19 𝐶 = (Atoms‘𝐾)
92 dih1dimat.p . . . . . . . . . . . . . . . . . . 19 𝑃 = ((oc‘𝐾)‘𝑊)
93 dih1dimat.j . . . . . . . . . . . . . . . . . . 19 𝐽 = (invr𝐹)
94 dih1dimat.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
951, 2, 29, 8, 24, 27, 91, 92, 13, 25, 14, 33, 48, 93, 5, 57, 36, 6, 7, 94dih1dimatlem0 36617 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
96953expa 1265 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
97 opelxp 5146 . . . . . . . . . . . . . . . . . 18 (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ↔ (𝑖𝑇𝑝𝐸))
9882, 83opth 4945 . . . . . . . . . . . . . . . . . . 19 (⟨𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
9998rexbii 3041 . . . . . . . . . . . . . . . . . 18 (∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
10097, 99anbi12i 733 . . . . . . . . . . . . . . . . 17 ((⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))))
10196, 100syl6bbr 278 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
102 eqeq1 2626 . . . . . . . . . . . . . . . . . 18 (𝑢 = ⟨𝑖, 𝑝⟩ → (𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ⟨𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
103102rexbidv 3052 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑖, 𝑝⟩ → (∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
104103elrab 3363 . . . . . . . . . . . . . . . 16 (⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ↔ (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
105101, 104syl6bbr 278 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}))
10690, 105syl5rbb 273 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ↔ ⟨𝑖, 𝑝⟩ ∈ {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)}))
10780, 81, 106eqrelrdv 5216 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
10876, 107eqtrd 2656 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
1091, 2, 47dvhlmod 36399 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑈 ∈ LMod)
1101, 13, 14, 2, 5dvhelvbasei 36377 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → ⟨𝑓, 𝑠⟩ ∈ 𝑉)
111110adantr 481 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ⟨𝑓, 𝑠⟩ ∈ 𝑉)
11248, 49, 5, 57, 6lspsn 19002 . . . . . . . . . . . . 13 ((𝑈 ∈ LMod ∧ ⟨𝑓, 𝑠⟩ ∈ 𝑉) → (𝑁‘{⟨𝑓, 𝑠⟩}) = {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)})
113109, 111, 112syl2anc 693 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)})
114 simpr 477 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑠𝑂)
11524, 1, 13, 14, 33, 2, 48, 93tendoinvcl 36393 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ≠ 𝑂))
116115simpld 475 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
11747, 66, 114, 116syl3anc 1326 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
1181, 13, 14tendocl 36055 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐽𝑠) ∈ 𝐸𝑓𝑇) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
11947, 117, 64, 118syl3anc 1326 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
12027, 91, 1, 92lhpocnel2 35305 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
12147, 120syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
12227, 91, 1, 13ltrnel 35425 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇 ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
12347, 119, 121, 122syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
124 eqid 2622 . . . . . . . . . . . . . . 15 ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊)
12527, 91, 1, 124, 29dihvalcqat 36528 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)))
12647, 123, 125syl2anc 693 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)))
12727, 91, 1, 92, 13, 14, 124, 94dicval2 36468 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
12847, 123, 127syl2anc 693 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
129126, 128eqtrd 2656 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
130108, 113, 1293eqtr4d 2666 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)))
13124, 1, 29dihfn 36557 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn 𝐵)
132131adantr 481 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → 𝐼 Fn 𝐵)
133132adantr 481 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐼 Fn 𝐵)
134 simplll 798 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐾 ∈ HL)
135 hlop 34649 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ OP)
136134, 135syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐾 ∈ OP)
13724, 1lhpbase 35284 . . . . . . . . . . . . . . . 16 (𝑊𝐻𝑊𝐵)
138137ad3antlr 767 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑊𝐵)
139 eqid 2622 . . . . . . . . . . . . . . . 16 (oc‘𝐾) = (oc‘𝐾)
14024, 139opoccl 34481 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
141136, 138, 140syl2anc 693 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
14292, 141syl5eqel 2705 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑃𝐵)
14324, 1, 13ltrncl 35411 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇𝑃𝐵) → (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵)
14447, 119, 142, 143syl3anc 1326 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵)
145 fnfvelrn 6356 . . . . . . . . . . . 12 ((𝐼 Fn 𝐵 ∧ (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) ∈ ran 𝐼)
146133, 144, 145syl2anc 693 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) ∈ ran 𝐼)
147130, 146eqeltrd 2701 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
14846, 147pm2.61dane 2881 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
149148ralrimivva 2971 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑓𝑇𝑠𝐸 (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
150 sneq 4187 . . . . . . . . . . 11 (𝑣 = ⟨𝑓, 𝑠⟩ → {𝑣} = {⟨𝑓, 𝑠⟩})
151150fveq2d 6195 . . . . . . . . . 10 (𝑣 = ⟨𝑓, 𝑠⟩ → (𝑁‘{𝑣}) = (𝑁‘{⟨𝑓, 𝑠⟩}))
152151eleq1d 2686 . . . . . . . . 9 (𝑣 = ⟨𝑓, 𝑠⟩ → ((𝑁‘{𝑣}) ∈ ran 𝐼 ↔ (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼))
153152ralxp 5263 . . . . . . . 8 (∀𝑣 ∈ (𝑇 × 𝐸)(𝑁‘{𝑣}) ∈ ran 𝐼 ↔ ∀𝑓𝑇𝑠𝐸 (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
154149, 153sylibr 224 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑣 ∈ (𝑇 × 𝐸)(𝑁‘{𝑣}) ∈ ran 𝐼)
155154r19.21bi 2932 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑇 × 𝐸)) → (𝑁‘{𝑣}) ∈ ran 𝐼)
15618, 155syldan 487 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑣}) ∈ ran 𝐼)
157 eleq1a 2696 . . . . 5 ((𝑁‘{𝑣}) ∈ ran 𝐼 → (𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
158156, 157syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → (𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
159158rexlimdva 3031 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
160159adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → (∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
16111, 160mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → 𝐷 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  {crab 2916  cdif 3571  wss 3574  {csn 4177  cop 4183   class class class wbr 4653  {copab 4712  cmpt 4729   I cid 5023   × cxp 5112  ran crn 5115  cres 5116  ccom 5118  Rel wrel 5119   Fn wfn 5883  1-1wf1 5885  cfv 5888  crio 6610  (class class class)co 6650  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  lecple 15948  occoc 15949  0gc0g 16100  invrcinvr 18671  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971  LVecclvec 19102  LSAtomsclsa 34261  OPcops 34459  Atomscatm 34550  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  trLctrl 35445  TEndoctendo 36040  DVecHcdvh 36367  DIsoBcdib 36427  DIsoCcdic 36461  DIsoHcdih 36517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring 36045  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518
This theorem is referenced by:  dih1dimat  36619
  Copyright terms: Public domain W3C validator