MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvidlem Structured version   Visualization version   GIF version

Theorem dvidlem 23679
Description: Lemma for dvid 23681 and dvconst 23680. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvidlem.1 (𝜑𝐹:ℂ⟶ℂ)
dvidlem.2 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
dvidlem.3 𝐵 ∈ ℂ
Assertion
Ref Expression
dvidlem (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧

Proof of Theorem dvidlem
StepHypRef Expression
1 dvfcn 23672 . . . 4 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2 ssid 3624 . . . . . . . 8 ℂ ⊆ ℂ
32a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
4 dvidlem.1 . . . . . . 7 (𝜑𝐹:ℂ⟶ℂ)
53, 4, 3dvbss 23665 . . . . . 6 (𝜑 → dom (ℂ D 𝐹) ⊆ ℂ)
6 reldv 23634 . . . . . . . . 9 Rel (ℂ D 𝐹)
7 simpr 477 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
8 eqid 2622 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
98cnfldtop 22587 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Top
108cnfldtopon 22586 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110toponunii 20721 . . . . . . . . . . . . 13 ℂ = (TopOpen‘ℂfld)
1211ntrtop 20874 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
139, 12ax-mp 5 . . . . . . . . . . 11 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
147, 13syl6eleqr 2712 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ))
15 limcresi 23649 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥) ⊆ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) lim 𝑥)
16 dvidlem.3 . . . . . . . . . . . . . . 15 𝐵 ∈ ℂ
1716a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
182a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ℂ ⊆ ℂ)
19 cncfmptc 22714 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
2017, 18, 18, 19syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ ℂ ↦ 𝐵) ∈ (ℂ–cn→ℂ))
21 eqidd 2623 . . . . . . . . . . . . 13 (𝑧 = 𝑥𝐵 = 𝐵)
2220, 7, 21cnmptlimc 23654 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ ℂ ↦ 𝐵) lim 𝑥))
2315, 22sseldi 3601 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) lim 𝑥))
24 eldifsn 4317 . . . . . . . . . . . . . . 15 (𝑧 ∈ (ℂ ∖ {𝑥}) ↔ (𝑧 ∈ ℂ ∧ 𝑧𝑥))
25 dvidlem.2 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
26253exp2 1285 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ ℂ → (𝑧 ∈ ℂ → (𝑧𝑥 → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵))))
2726imp43 621 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℂ) ∧ (𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
2824, 27sylan2b 492 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℂ) ∧ 𝑧 ∈ (ℂ ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
2928mpteq2dva 4744 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵))
30 difss 3737 . . . . . . . . . . . . . 14 (ℂ ∖ {𝑥}) ⊆ ℂ
31 resmpt 5449 . . . . . . . . . . . . . 14 ((ℂ ∖ {𝑥}) ⊆ ℂ → ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵))
3230, 31ax-mp 5 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ 𝐵)
3329, 32syl6eqr 2674 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = ((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})))
3433oveq1d 6665 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) = (((𝑧 ∈ ℂ ↦ 𝐵) ↾ (ℂ ∖ {𝑥})) lim 𝑥))
3523, 34eleqtrrd 2704 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → 𝐵 ∈ ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
3611restid 16094 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
379, 36ax-mp 5 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
3837eqcomi 2631 . . . . . . . . . . 11 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
39 eqid 2622 . . . . . . . . . . 11 (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
404adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℂ) → 𝐹:ℂ⟶ℂ)
4138, 8, 39, 18, 40, 18eldv 23662 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑥(ℂ D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘(TopOpen‘ℂfld))‘ℂ) ∧ 𝐵 ∈ ((𝑧 ∈ (ℂ ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
4214, 35, 41mpbir2and 957 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝑥(ℂ D 𝐹)𝐵)
43 releldm 5358 . . . . . . . . 9 ((Rel (ℂ D 𝐹) ∧ 𝑥(ℂ D 𝐹)𝐵) → 𝑥 ∈ dom (ℂ D 𝐹))
446, 42, 43sylancr 695 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ dom (ℂ D 𝐹))
4544ex 450 . . . . . . 7 (𝜑 → (𝑥 ∈ ℂ → 𝑥 ∈ dom (ℂ D 𝐹)))
4645ssrdv 3609 . . . . . 6 (𝜑 → ℂ ⊆ dom (ℂ D 𝐹))
475, 46eqssd 3620 . . . . 5 (𝜑 → dom (ℂ D 𝐹) = ℂ)
4847feq2d 6031 . . . 4 (𝜑 → ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ↔ (ℂ D 𝐹):ℂ⟶ℂ))
491, 48mpbii 223 . . 3 (𝜑 → (ℂ D 𝐹):ℂ⟶ℂ)
50 ffn 6045 . . 3 ((ℂ D 𝐹):ℂ⟶ℂ → (ℂ D 𝐹) Fn ℂ)
5149, 50syl 17 . 2 (𝜑 → (ℂ D 𝐹) Fn ℂ)
52 fnconstg 6093 . . 3 (𝐵 ∈ ℂ → (ℂ × {𝐵}) Fn ℂ)
5316, 52mp1i 13 . 2 (𝜑 → (ℂ × {𝐵}) Fn ℂ)
54 ffun 6048 . . . . . 6 ((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ → Fun (ℂ D 𝐹))
551, 54mp1i 13 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Fun (ℂ D 𝐹))
56 funbrfvb 6238 . . . . 5 ((Fun (ℂ D 𝐹) ∧ 𝑥 ∈ dom (ℂ D 𝐹)) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5755, 44, 56syl2anc 693 . . . 4 ((𝜑𝑥 ∈ ℂ) → (((ℂ D 𝐹)‘𝑥) = 𝐵𝑥(ℂ D 𝐹)𝐵))
5842, 57mpbird 247 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = 𝐵)
5916a1i 11 . . . 4 (𝜑𝐵 ∈ ℂ)
60 fvconst2g 6467 . . . 4 ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
6159, 60sylan 488 . . 3 ((𝜑𝑥 ∈ ℂ) → ((ℂ × {𝐵})‘𝑥) = 𝐵)
6258, 61eqtr4d 2659 . 2 ((𝜑𝑥 ∈ ℂ) → ((ℂ D 𝐹)‘𝑥) = ((ℂ × {𝐵})‘𝑥))
6351, 53, 62eqfnfvd 6314 1 (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cdif 3571  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  cres 5116  Rel wrel 5119  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cmin 10266   / cdiv 10684  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  Topctop 20698  intcnt 20821  cnccncf 22679   lim climc 23626   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvconst  23680  dvid  23681
  Copyright terms: Public domain W3C validator