| Step | Hyp | Ref
| Expression |
| 1 | | faclim2.1 |
. 2
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) |
| 2 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑎 = 0 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑0)) |
| 3 | 2 | oveq2d 6666 |
. . . . . 6
⊢ (𝑎 = 0 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑0))) |
| 4 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑎 = 0 → (𝑛 + 𝑎) = (𝑛 + 0)) |
| 5 | 4 | fveq2d 6195 |
. . . . . 6
⊢ (𝑎 = 0 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 0))) |
| 6 | 3, 5 | oveq12d 6668 |
. . . . 5
⊢ (𝑎 = 0 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) |
| 7 | 6 | mpteq2dv 4745 |
. . . 4
⊢ (𝑎 = 0 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))) |
| 8 | 7 | breq1d 4663 |
. . 3
⊢ (𝑎 = 0 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0)))) ⇝ 1)) |
| 9 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑎 = 𝑚 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑚)) |
| 10 | 9 | oveq2d 6666 |
. . . . . 6
⊢ (𝑎 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑚))) |
| 11 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑎 = 𝑚 → (𝑛 + 𝑎) = (𝑛 + 𝑚)) |
| 12 | 11 | fveq2d 6195 |
. . . . . 6
⊢ (𝑎 = 𝑚 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑚))) |
| 13 | 10, 12 | oveq12d 6668 |
. . . . 5
⊢ (𝑎 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) |
| 14 | 13 | mpteq2dv 4745 |
. . . 4
⊢ (𝑎 = 𝑚 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))) |
| 15 | 14 | breq1d 4663 |
. . 3
⊢ (𝑎 = 𝑚 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1)) |
| 16 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑎 = (𝑚 + 1) → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑(𝑚 + 1))) |
| 17 | 16 | oveq2d 6666 |
. . . . . 6
⊢ (𝑎 = (𝑚 + 1) → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1)))) |
| 18 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑎 = (𝑚 + 1) → (𝑛 + 𝑎) = (𝑛 + (𝑚 + 1))) |
| 19 | 18 | fveq2d 6195 |
. . . . . 6
⊢ (𝑎 = (𝑚 + 1) → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + (𝑚 + 1)))) |
| 20 | 17, 19 | oveq12d 6668 |
. . . . 5
⊢ (𝑎 = (𝑚 + 1) → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) |
| 21 | 20 | mpteq2dv 4745 |
. . . 4
⊢ (𝑎 = (𝑚 + 1) → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))) |
| 22 | 21 | breq1d 4663 |
. . 3
⊢ (𝑎 = (𝑚 + 1) → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1)) |
| 23 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑎 = 𝑀 → ((𝑛 + 1)↑𝑎) = ((𝑛 + 1)↑𝑀)) |
| 24 | 23 | oveq2d 6666 |
. . . . . 6
⊢ (𝑎 = 𝑀 → ((!‘𝑛) · ((𝑛 + 1)↑𝑎)) = ((!‘𝑛) · ((𝑛 + 1)↑𝑀))) |
| 25 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑎 = 𝑀 → (𝑛 + 𝑎) = (𝑛 + 𝑀)) |
| 26 | 25 | fveq2d 6195 |
. . . . . 6
⊢ (𝑎 = 𝑀 → (!‘(𝑛 + 𝑎)) = (!‘(𝑛 + 𝑀))) |
| 27 | 24, 26 | oveq12d 6668 |
. . . . 5
⊢ (𝑎 = 𝑀 → (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎))) = (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) |
| 28 | 27 | mpteq2dv 4745 |
. . . 4
⊢ (𝑎 = 𝑀 → (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀))))) |
| 29 | 28 | breq1d 4663 |
. . 3
⊢ (𝑎 = 𝑀 → ((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑎)) / (!‘(𝑛 + 𝑎)))) ⇝ 1 ↔ (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑀)) / (!‘(𝑛 + 𝑀)))) ⇝ 1)) |
| 30 | | nnuz 11723 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 31 | | 1zzd 11408 |
. . . . 5
⊢ (⊤
→ 1 ∈ ℤ) |
| 32 | | nnex 11026 |
. . . . . . 7
⊢ ℕ
∈ V |
| 33 | 32 | mptex 6486 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑0)) /
(!‘(𝑛 + 0)))) ∈
V |
| 34 | 33 | a1i 11 |
. . . . 5
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 + 1)↑0))
/ (!‘(𝑛 + 0))))
∈ V) |
| 35 | | 1cnd 10056 |
. . . . 5
⊢ (⊤
→ 1 ∈ ℂ) |
| 36 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚)) |
| 37 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1)) |
| 38 | 37 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → ((𝑛 + 1)↑0) = ((𝑚 + 1)↑0)) |
| 39 | 36, 38 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → ((!‘𝑛) · ((𝑛 + 1)↑0)) = ((!‘𝑚) · ((𝑚 + 1)↑0))) |
| 40 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝑛 + 0) = (𝑚 + 0)) |
| 41 | 40 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (!‘(𝑛 + 0)) = (!‘(𝑚 + 0))) |
| 42 | 39, 41 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))) = (((!‘𝑚) · ((𝑚 + 1)↑0)) / (!‘(𝑚 + 0)))) |
| 43 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑0)) /
(!‘(𝑛 + 0)))) =
(𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑0)) /
(!‘(𝑛 +
0)))) |
| 44 | | ovex 6678 |
. . . . . . . 8
⊢
(((!‘𝑚)
· ((𝑚 + 1)↑0))
/ (!‘(𝑚 + 0))) ∈
V |
| 45 | 42, 43, 44 | fvmpt 6282 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑0)) /
(!‘(𝑛 +
0))))‘𝑚) =
(((!‘𝑚) ·
((𝑚 + 1)↑0)) /
(!‘(𝑚 +
0)))) |
| 46 | | peano2nn 11032 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
ℕ) |
| 47 | 46 | nncnd 11036 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
ℂ) |
| 48 | 47 | exp0d 13002 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → ((𝑚 + 1)↑0) =
1) |
| 49 | 48 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ →
((!‘𝑚) ·
((𝑚 + 1)↑0)) =
((!‘𝑚) ·
1)) |
| 50 | | nnnn0 11299 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
| 51 | | faccl 13070 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ (!‘𝑚) ∈
ℕ) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ →
(!‘𝑚) ∈
ℕ) |
| 53 | 52 | nncnd 11036 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ →
(!‘𝑚) ∈
ℂ) |
| 54 | 53 | mulid1d 10057 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ →
((!‘𝑚) · 1) =
(!‘𝑚)) |
| 55 | 49, 54 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ →
((!‘𝑚) ·
((𝑚 + 1)↑0)) =
(!‘𝑚)) |
| 56 | | nncn 11028 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℂ) |
| 57 | 56 | addid1d 10236 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ → (𝑚 + 0) = 𝑚) |
| 58 | 57 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ →
(!‘(𝑚 + 0)) =
(!‘𝑚)) |
| 59 | 55, 58 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ →
(((!‘𝑚) ·
((𝑚 + 1)↑0)) /
(!‘(𝑚 + 0))) =
((!‘𝑚) /
(!‘𝑚))) |
| 60 | 52 | nnne0d 11065 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ →
(!‘𝑚) ≠
0) |
| 61 | 53, 60 | dividd 10799 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ →
((!‘𝑚) /
(!‘𝑚)) =
1) |
| 62 | 45, 59, 61 | 3eqtrd 2660 |
. . . . . 6
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑0)) /
(!‘(𝑛 +
0))))‘𝑚) =
1) |
| 63 | 62 | adantl 482 |
. . . . 5
⊢
((⊤ ∧ 𝑚
∈ ℕ) → ((𝑛
∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑0)) / (!‘(𝑛 + 0))))‘𝑚) = 1) |
| 64 | 30, 31, 34, 35, 63 | climconst 14274 |
. . . 4
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 + 1)↑0))
/ (!‘(𝑛 + 0))))
⇝ 1) |
| 65 | 64 | trud 1493 |
. . 3
⊢ (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑0)) /
(!‘(𝑛 + 0)))) ⇝
1 |
| 66 | | 1zzd 11408 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) → 1 ∈
ℤ) |
| 67 | | simpr 477 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) ⇝ 1) |
| 68 | 32 | mptex 6486 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V |
| 69 | 68 | a1i 11 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ∈ V) |
| 70 | | 1zzd 11408 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ 1 ∈ ℤ) |
| 71 | | 1cnd 10056 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ 1 ∈ ℂ) |
| 72 | | nn0p1nn 11332 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ) |
| 73 | 72 | nnzd 11481 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℤ) |
| 74 | 32 | mptex 6486 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V |
| 75 | 74 | a1i 11 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (𝑛 ∈ ℕ
↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ∈ V) |
| 76 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1)) |
| 77 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑛 + (𝑚 + 1)) = (𝑘 + (𝑚 + 1))) |
| 78 | 76, 77 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) |
| 79 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) = (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) |
| 80 | | ovex 6678 |
. . . . . . . . . 10
⊢ ((𝑘 + 1) / (𝑘 + (𝑚 + 1))) ∈ V |
| 81 | 78, 79, 80 | fvmpt 6282 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) |
| 82 | 81 | adantl 482 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) = ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) |
| 83 | 30, 70, 71, 73, 75, 82 | divcnvlin 31618 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ (𝑛 ∈ ℕ
↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1) |
| 84 | 83 | adantr 481 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1)))) ⇝ 1) |
| 85 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ 𝑛 ∈
ℕ) |
| 86 | 85 | nnnn0d 11351 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ 𝑛 ∈
ℕ0) |
| 87 | | faccl 13070 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ (!‘𝑛) ∈
ℕ) |
| 88 | 86, 87 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (!‘𝑛) ∈
ℕ) |
| 89 | | peano2nn 11032 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
| 90 | | nnexpcl 12873 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0)
→ ((𝑛 + 1)↑𝑚) ∈
ℕ) |
| 91 | 89, 90 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0)
→ ((𝑛 + 1)↑𝑚) ∈
ℕ) |
| 92 | 91 | ancoms 469 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((𝑛 + 1)↑𝑚) ∈
ℕ) |
| 93 | 88, 92 | nnmulcld 11068 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) ∈
ℕ) |
| 94 | 93 | nnred 11035 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) ∈
ℝ) |
| 95 | | nnnn0addcl 11323 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ0)
→ (𝑛 + 𝑚) ∈
ℕ) |
| 96 | 95 | ancoms 469 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑛 + 𝑚) ∈
ℕ) |
| 97 | 96 | nnnn0d 11351 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑛 + 𝑚) ∈
ℕ0) |
| 98 | | faccl 13070 |
. . . . . . . . . . . 12
⊢ ((𝑛 + 𝑚) ∈ ℕ0 →
(!‘(𝑛 + 𝑚)) ∈
ℕ) |
| 99 | 97, 98 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (!‘(𝑛 + 𝑚)) ∈
ℕ) |
| 100 | 94, 99 | nndivred 11069 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚))) ∈
ℝ) |
| 101 | 100 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚))) ∈
ℂ) |
| 102 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚)))) |
| 103 | 101, 102 | fmptd 6385 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))):ℕ⟶ℂ) |
| 104 | 103 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ) |
| 105 | 104 | adantlr 751 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) ∈ ℂ) |
| 106 | 89 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑛 + 1) ∈
ℕ) |
| 107 | 106 | nnred 11035 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑛 + 1) ∈
ℝ) |
| 108 | 72 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑚 + 1) ∈
ℕ) |
| 109 | 85, 108 | nnaddcld 11067 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ (𝑛 + (𝑚 + 1)) ∈
ℕ) |
| 110 | 107, 109 | nndivred 11069 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℝ) |
| 111 | 110 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑛 ∈ ℕ)
→ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))) ∈ ℂ) |
| 112 | 111, 79 | fmptd 6385 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (𝑛 ∈ ℕ
↦ ((𝑛 + 1) / (𝑛 + (𝑚 +
1)))):ℕ⟶ℂ) |
| 113 | 112 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ) |
| 114 | 113 | adantlr 751 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘) ∈ ℂ) |
| 115 | | peano2nn 11032 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
| 116 | 115 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑘 + 1) ∈
ℕ) |
| 117 | 116 | nncnd 11036 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑘 + 1) ∈
ℂ) |
| 118 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ 𝑚 ∈
ℕ0) |
| 119 | 117, 118 | expp1d 13009 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑘 + 1)↑(𝑚 + 1)) = (((𝑘 + 1)↑𝑚) · (𝑘 + 1))) |
| 120 | 119 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((!‘𝑘)
· ((𝑘 +
1)↑(𝑚 + 1))) =
((!‘𝑘) ·
(((𝑘 + 1)↑𝑚) · (𝑘 + 1)))) |
| 121 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ 𝑘 ∈
ℕ) |
| 122 | 121 | nnnn0d 11351 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ 𝑘 ∈
ℕ0) |
| 123 | | faccl 13070 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
| 124 | 122, 123 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘𝑘) ∈
ℕ) |
| 125 | 124 | nncnd 11036 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘𝑘) ∈
ℂ) |
| 126 | | nnexpcl 12873 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 + 1) ∈ ℕ ∧ 𝑚 ∈ ℕ0)
→ ((𝑘 + 1)↑𝑚) ∈
ℕ) |
| 127 | 115, 126 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ0)
→ ((𝑘 + 1)↑𝑚) ∈
ℕ) |
| 128 | 127 | ancoms 469 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑘 + 1)↑𝑚) ∈
ℕ) |
| 129 | 128 | nncnd 11036 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑘 + 1)↑𝑚) ∈
ℂ) |
| 130 | 125, 129,
117 | mulassd 10063 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (((!‘𝑘)
· ((𝑘 +
1)↑𝑚)) · (𝑘 + 1)) = ((!‘𝑘) · (((𝑘 + 1)↑𝑚) · (𝑘 + 1)))) |
| 131 | 120, 130 | eqtr4d 2659 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((!‘𝑘)
· ((𝑘 +
1)↑(𝑚 + 1))) =
(((!‘𝑘) ·
((𝑘 + 1)↑𝑚)) · (𝑘 + 1))) |
| 132 | 122, 118 | nn0addcld 11355 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑘 + 𝑚) ∈
ℕ0) |
| 133 | | facp1 13065 |
. . . . . . . . . . . 12
⊢ ((𝑘 + 𝑚) ∈ ℕ0 →
(!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1))) |
| 134 | 132, 133 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1))) |
| 135 | 121 | nncnd 11036 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ 𝑘 ∈
ℂ) |
| 136 | 118 | nn0cnd 11353 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ 𝑚 ∈
ℂ) |
| 137 | | 1cnd 10056 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ 1 ∈ ℂ) |
| 138 | 135, 136,
137 | addassd 10062 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑘 + 𝑚) + 1) = (𝑘 + (𝑚 + 1))) |
| 139 | 138 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘((𝑘 + 𝑚) + 1)) = (!‘(𝑘 + (𝑚 + 1)))) |
| 140 | 138 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((!‘(𝑘 + 𝑚)) · ((𝑘 + 𝑚) + 1)) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))) |
| 141 | 134, 139,
140 | 3eqtr3d 2664 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘(𝑘 + (𝑚 + 1))) = ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1)))) |
| 142 | 131, 141 | oveq12d 6668 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (((!‘𝑘)
· ((𝑘 +
1)↑(𝑚 + 1))) /
(!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))) |
| 143 | 124, 128 | nnmulcld 11068 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((!‘𝑘)
· ((𝑘 +
1)↑𝑚)) ∈
ℕ) |
| 144 | 143 | nncnd 11036 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((!‘𝑘)
· ((𝑘 +
1)↑𝑚)) ∈
ℂ) |
| 145 | | faccl 13070 |
. . . . . . . . . . . 12
⊢ ((𝑘 + 𝑚) ∈ ℕ0 →
(!‘(𝑘 + 𝑚)) ∈
ℕ) |
| 146 | 132, 145 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘(𝑘 + 𝑚)) ∈
ℕ) |
| 147 | 146 | nncnd 11036 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘(𝑘 + 𝑚)) ∈
ℂ) |
| 148 | 72 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑚 + 1) ∈
ℕ) |
| 149 | 121, 148 | nnaddcld 11067 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑘 + (𝑚 + 1)) ∈
ℕ) |
| 150 | 149 | nncnd 11036 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑘 + (𝑚 + 1)) ∈
ℂ) |
| 151 | 146 | nnne0d 11065 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (!‘(𝑘 + 𝑚)) ≠ 0) |
| 152 | 149 | nnne0d 11065 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (𝑘 + (𝑚 + 1)) ≠ 0) |
| 153 | 144, 147,
117, 150, 151, 152 | divmuldivd 10842 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((((!‘𝑘)
· ((𝑘 +
1)↑𝑚)) /
(!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) · (𝑘 + 1)) / ((!‘(𝑘 + 𝑚)) · (𝑘 + (𝑚 + 1))))) |
| 154 | 142, 153 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (((!‘𝑘)
· ((𝑘 +
1)↑(𝑚 + 1))) /
(!‘(𝑘 + (𝑚 + 1)))) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))) |
| 155 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘)) |
| 156 | 76 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → ((𝑛 + 1)↑(𝑚 + 1)) = ((𝑘 + 1)↑(𝑚 + 1))) |
| 157 | 155, 156 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) = ((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1)))) |
| 158 | 77 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (!‘(𝑛 + (𝑚 + 1))) = (!‘(𝑘 + (𝑚 + 1)))) |
| 159 | 157, 158 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1))))) |
| 160 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) = (𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) |
| 161 | | ovex 6678 |
. . . . . . . . . 10
⊢
(((!‘𝑘)
· ((𝑘 +
1)↑(𝑚 + 1))) /
(!‘(𝑘 + (𝑚 + 1)))) ∈
V |
| 162 | 159, 160,
161 | fvmpt 6282 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1))))) |
| 163 | 162 | adantl 482 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑(𝑚 + 1))) /
(!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑(𝑚 + 1))) / (!‘(𝑘 + (𝑚 + 1))))) |
| 164 | 76 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → ((𝑛 + 1)↑𝑚) = ((𝑘 + 1)↑𝑚)) |
| 165 | 155, 164 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → ((!‘𝑛) · ((𝑛 + 1)↑𝑚)) = ((!‘𝑘) · ((𝑘 + 1)↑𝑚))) |
| 166 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝑛 + 𝑚) = (𝑘 + 𝑚)) |
| 167 | 166 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (!‘(𝑛 + 𝑚)) = (!‘(𝑘 + 𝑚))) |
| 168 | 165, 167 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚)))) |
| 169 | | ovex 6678 |
. . . . . . . . . . 11
⊢
(((!‘𝑘)
· ((𝑘 +
1)↑𝑚)) /
(!‘(𝑘 + 𝑚))) ∈ V |
| 170 | 168, 102,
169 | fvmpt 6282 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) = (((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚)))) |
| 171 | 170, 81 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))) |
| 172 | 171 | adantl 482 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ (((𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘)) = ((((!‘𝑘) · ((𝑘 + 1)↑𝑚)) / (!‘(𝑘 + 𝑚))) · ((𝑘 + 1) / (𝑘 + (𝑚 + 1))))) |
| 173 | 154, 163,
172 | 3eqtr4d 2666 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ ℕ)
→ ((𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑(𝑚 + 1))) /
(!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘))) |
| 174 | 173 | adantlr 751 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1)))))‘𝑘) = (((𝑛 ∈ ℕ ↦ (((!‘𝑛) · ((𝑛 + 1)↑𝑚)) / (!‘(𝑛 + 𝑚))))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑛 + 1) / (𝑛 + (𝑚 + 1))))‘𝑘))) |
| 175 | 30, 66, 67, 69, 84, 105, 114, 174 | climmul 14363 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ (1 ·
1)) |
| 176 | | 1t1e1 11175 |
. . . . 5
⊢ (1
· 1) = 1 |
| 177 | 175, 176 | syl6breq 4694 |
. . . 4
⊢ ((𝑚 ∈ ℕ0
∧ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1) → (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1) |
| 178 | 177 | ex 450 |
. . 3
⊢ (𝑚 ∈ ℕ0
→ ((𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑚)) /
(!‘(𝑛 + 𝑚)))) ⇝ 1 → (𝑛 ∈ ℕ ↦
(((!‘𝑛) ·
((𝑛 + 1)↑(𝑚 + 1))) / (!‘(𝑛 + (𝑚 + 1))))) ⇝ 1)) |
| 179 | 8, 15, 22, 29, 65, 178 | nn0ind 11472 |
. 2
⊢ (𝑀 ∈ ℕ0
→ (𝑛 ∈ ℕ
↦ (((!‘𝑛)
· ((𝑛 +
1)↑𝑀)) /
(!‘(𝑛 + 𝑀)))) ⇝ 1) |
| 180 | 1, 179 | syl5eqbr 4688 |
1
⊢ (𝑀 ∈ ℕ0
→ 𝐹 ⇝
1) |