Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnodvds Structured version   Visualization version   GIF version

Theorem fmtnodvds 41456
Description: Any Fermat number divides a greater Fermat number minus 2. Corrolary of fmtnorec2 41455, see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
fmtnodvds ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2))

Proof of Theorem fmtnodvds
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ ℕ0)
2 nn0nnaddcl 11324 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℕ)
3 nnm1nn0 11334 . . . . 5 ((𝑁 + 𝑀) ∈ ℕ → ((𝑁 + 𝑀) − 1) ∈ ℕ0)
42, 3syl 17 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁 + 𝑀) − 1) ∈ ℕ0)
5 1red 10055 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 1 ∈ ℝ)
6 nnre 11027 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
76adantl 482 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
8 nn0re 11301 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
98adantr 481 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ ℝ)
10 nnge1 11046 . . . . . . 7 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
1110adantl 482 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 1 ≤ 𝑀)
125, 7, 9, 11leadd2dd 10642 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 1) ≤ (𝑁 + 𝑀))
13 readdcl 10019 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 + 𝑀) ∈ ℝ)
148, 6, 13syl2an 494 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℝ)
15 leaddsub 10504 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 + 𝑀) ∈ ℝ) → ((𝑁 + 1) ≤ (𝑁 + 𝑀) ↔ 𝑁 ≤ ((𝑁 + 𝑀) − 1)))
169, 5, 14, 15syl3anc 1326 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁 + 1) ≤ (𝑁 + 𝑀) ↔ 𝑁 ≤ ((𝑁 + 𝑀) − 1)))
1712, 16mpbid 222 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ≤ ((𝑁 + 𝑀) − 1))
18 elfz2nn0 12431 . . . 4 (𝑁 ∈ (0...((𝑁 + 𝑀) − 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 𝑀) − 1) ∈ ℕ0𝑁 ≤ ((𝑁 + 𝑀) − 1)))
191, 4, 17, 18syl3anbrc 1246 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ (0...((𝑁 + 𝑀) − 1)))
20 fzfid 12772 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (0...((𝑁 + 𝑀) − 1)) ∈ Fin)
21 fz0ssnn0 12435 . . . . 5 (0...((𝑁 + 𝑀) − 1)) ⊆ ℕ0
2221a1i 11 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (0...((𝑁 + 𝑀) − 1)) ⊆ ℕ0)
23 2nn0 11309 . . . . . . . . . 10 2 ∈ ℕ0
2423a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
25 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
2624, 25nn0expcld 13031 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ0)
2724, 26nn0expcld 13031 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ0)
2827nn0zd 11480 . . . . . . 7 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℤ)
2928peano2zd 11485 . . . . . 6 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) ∈ ℤ)
3029adantl 482 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → ((2↑(2↑𝑛)) + 1) ∈ ℤ)
31 df-fmtno 41440 . . . . 5 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
3230, 31fmptd 6385 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → FermatNo:ℕ0⟶ℤ)
3320, 22, 32fprodfvdvdsd 15058 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ∀𝑛 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
34 fveq2 6191 . . . . 5 (𝑛 = 𝑁 → (FermatNo‘𝑛) = (FermatNo‘𝑁))
3534breq1d 4663 . . . 4 (𝑛 = 𝑁 → ((FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) ↔ (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘)))
3635rspcv 3305 . . 3 (𝑁 ∈ (0...((𝑁 + 𝑀) − 1)) → (∀𝑛 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) → (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘)))
3719, 33, 36sylc 65 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
38 elfznn0 12433 . . . . . . 7 (𝑘 ∈ (0...((𝑁 + 𝑀) − 1)) → 𝑘 ∈ ℕ0)
3938adantl 482 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → 𝑘 ∈ ℕ0)
40 fmtnonn 41443 . . . . . 6 (𝑘 ∈ ℕ0 → (FermatNo‘𝑘) ∈ ℕ)
4139, 40syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → (FermatNo‘𝑘) ∈ ℕ)
4241nncnd 11036 . . . 4 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → (FermatNo‘𝑘) ∈ ℂ)
4320, 42fprodcl 14682 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) ∈ ℂ)
44 2cnd 11093 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 2 ∈ ℂ)
45 nn0cn 11302 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
46 nncn 11028 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
47 addcl 10018 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + 𝑀) ∈ ℂ)
4845, 46, 47syl2an 494 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℂ)
49 npcan1 10455 . . . . . . 7 ((𝑁 + 𝑀) ∈ ℂ → (((𝑁 + 𝑀) − 1) + 1) = (𝑁 + 𝑀))
5048, 49syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (((𝑁 + 𝑀) − 1) + 1) = (𝑁 + 𝑀))
5150eqcomd 2628 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) = (((𝑁 + 𝑀) − 1) + 1))
5251fveq2d 6195 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(𝑁 + 𝑀)) = (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)))
53 fmtnorec2 41455 . . . . 5 (((𝑁 + 𝑀) − 1) ∈ ℕ0 → (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
544, 53syl 17 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
5552, 54eqtrd 2656 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(𝑁 + 𝑀)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
5643, 44, 55mvrraddd 10445 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((FermatNo‘(𝑁 + 𝑀)) − 2) = ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
5737, 56breqtrrd 4681 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  cmin 10266  cn 11020  2c2 11070  0cn0 11292  cz 11377  ...cfz 12326  cexp 12860  cprod 14635  cdvds 14983  FermatNocfmtno 41439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-fmtno 41440
This theorem is referenced by:  goldbachthlem1  41457
  Copyright terms: Public domain W3C validator