Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnodvds Structured version   Visualization version   Unicode version

Theorem fmtnodvds 41456
Description: Any Fermat number divides a greater Fermat number minus 2. Corrolary of fmtnorec2 41455, see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
fmtnodvds  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  (FermatNo `  N )  ||  ( (FermatNo `  ( N  +  M )
)  -  2 ) )

Proof of Theorem fmtnodvds
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  N  e.  NN0 )
2 nn0nnaddcl 11324 . . . . 5  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  ( N  +  M
)  e.  NN )
3 nnm1nn0 11334 . . . . 5  |-  ( ( N  +  M )  e.  NN  ->  (
( N  +  M
)  -  1 )  e.  NN0 )
42, 3syl 17 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  ( ( N  +  M )  -  1 )  e.  NN0 )
5 1red 10055 . . . . . 6  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  1  e.  RR )
6 nnre 11027 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  RR )
76adantl 482 . . . . . 6  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  M  e.  RR )
8 nn0re 11301 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  RR )
98adantr 481 . . . . . 6  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  N  e.  RR )
10 nnge1 11046 . . . . . . 7  |-  ( M  e.  NN  ->  1  <_  M )
1110adantl 482 . . . . . 6  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  1  <_  M )
125, 7, 9, 11leadd2dd 10642 . . . . 5  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  ( N  +  1 )  <_  ( N  +  M ) )
13 readdcl 10019 . . . . . . 7  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( N  +  M
)  e.  RR )
148, 6, 13syl2an 494 . . . . . 6  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  ( N  +  M
)  e.  RR )
15 leaddsub 10504 . . . . . 6  |-  ( ( N  e.  RR  /\  1  e.  RR  /\  ( N  +  M )  e.  RR )  ->  (
( N  +  1 )  <_  ( N  +  M )  <->  N  <_  ( ( N  +  M
)  -  1 ) ) )
169, 5, 14, 15syl3anc 1326 . . . . 5  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  ( ( N  + 
1 )  <_  ( N  +  M )  <->  N  <_  ( ( N  +  M )  - 
1 ) ) )
1712, 16mpbid 222 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  N  <_  ( ( N  +  M )  -  1 ) )
18 elfz2nn0 12431 . . . 4  |-  ( N  e.  ( 0 ... ( ( N  +  M )  -  1 ) )  <->  ( N  e.  NN0  /\  ( ( N  +  M )  -  1 )  e. 
NN0  /\  N  <_  ( ( N  +  M
)  -  1 ) ) )
191, 4, 17, 18syl3anbrc 1246 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  N  e.  ( 0 ... ( ( N  +  M )  - 
1 ) ) )
20 fzfid 12772 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  ( 0 ... (
( N  +  M
)  -  1 ) )  e.  Fin )
21 fz0ssnn0 12435 . . . . 5  |-  ( 0 ... ( ( N  +  M )  - 
1 ) )  C_  NN0
2221a1i 11 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  ( 0 ... (
( N  +  M
)  -  1 ) )  C_  NN0 )
23 2nn0 11309 . . . . . . . . . 10  |-  2  e.  NN0
2423a1i 11 . . . . . . . . 9  |-  ( n  e.  NN0  ->  2  e. 
NN0 )
25 id 22 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  n  e. 
NN0 )
2624, 25nn0expcld 13031 . . . . . . . . 9  |-  ( n  e.  NN0  ->  ( 2 ^ n )  e. 
NN0 )
2724, 26nn0expcld 13031 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( 2 ^ ( 2 ^ n ) )  e. 
NN0 )
2827nn0zd 11480 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 2 ^ ( 2 ^ n ) )  e.  ZZ )
2928peano2zd 11485 . . . . . 6  |-  ( n  e.  NN0  ->  ( ( 2 ^ ( 2 ^ n ) )  +  1 )  e.  ZZ )
3029adantl 482 . . . . 5  |-  ( ( ( N  e.  NN0  /\  M  e.  NN )  /\  n  e.  NN0 )  ->  ( ( 2 ^ ( 2 ^ n ) )  +  1 )  e.  ZZ )
31 df-fmtno 41440 . . . . 5  |- FermatNo  =  ( n  e.  NN0  |->  ( ( 2 ^ ( 2 ^ n ) )  +  1 ) )
3230, 31fmptd 6385 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  NN )  -> FermatNo : NN0 --> ZZ )
3320, 22, 32fprodfvdvdsd 15058 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  A. n  e.  ( 0 ... ( ( N  +  M )  -  1 ) ) (FermatNo `  n )  ||  prod_ k  e.  ( 0 ... ( ( N  +  M )  -  1 ) ) (FermatNo `  k )
)
34 fveq2 6191 . . . . 5  |-  ( n  =  N  ->  (FermatNo `  n )  =  (FermatNo `  N ) )
3534breq1d 4663 . . . 4  |-  ( n  =  N  ->  (
(FermatNo `  n )  ||  prod_ k  e.  ( 0 ... ( ( N  +  M )  - 
1 ) ) (FermatNo `  k )  <->  (FermatNo `  N
)  ||  prod_ k  e.  ( 0 ... (
( N  +  M
)  -  1 ) ) (FermatNo `  k
) ) )
3635rspcv 3305 . . 3  |-  ( N  e.  ( 0 ... ( ( N  +  M )  -  1 ) )  ->  ( A. n  e.  (
0 ... ( ( N  +  M )  - 
1 ) ) (FermatNo `  n )  ||  prod_ k  e.  ( 0 ... ( ( N  +  M )  -  1 ) ) (FermatNo `  k
)  ->  (FermatNo `  N
)  ||  prod_ k  e.  ( 0 ... (
( N  +  M
)  -  1 ) ) (FermatNo `  k
) ) )
3719, 33, 36sylc 65 . 2  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  (FermatNo `  N )  ||  prod_ k  e.  ( 0 ... ( ( N  +  M )  -  1 ) ) (FermatNo `  k )
)
38 elfznn0 12433 . . . . . . 7  |-  ( k  e.  ( 0 ... ( ( N  +  M )  -  1 ) )  ->  k  e.  NN0 )
3938adantl 482 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  M  e.  NN )  /\  k  e.  ( 0 ... ( ( N  +  M )  -  1 ) ) )  ->  k  e.  NN0 )
40 fmtnonn 41443 . . . . . 6  |-  ( k  e.  NN0  ->  (FermatNo `  k
)  e.  NN )
4139, 40syl 17 . . . . 5  |-  ( ( ( N  e.  NN0  /\  M  e.  NN )  /\  k  e.  ( 0 ... ( ( N  +  M )  -  1 ) ) )  ->  (FermatNo `  k
)  e.  NN )
4241nncnd 11036 . . . 4  |-  ( ( ( N  e.  NN0  /\  M  e.  NN )  /\  k  e.  ( 0 ... ( ( N  +  M )  -  1 ) ) )  ->  (FermatNo `  k
)  e.  CC )
4320, 42fprodcl 14682 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  prod_ k  e.  ( 0 ... ( ( N  +  M )  -  1 ) ) (FermatNo `  k )  e.  CC )
44 2cnd 11093 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  2  e.  CC )
45 nn0cn 11302 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  CC )
46 nncn 11028 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  CC )
47 addcl 10018 . . . . . . . 8  |-  ( ( N  e.  CC  /\  M  e.  CC )  ->  ( N  +  M
)  e.  CC )
4845, 46, 47syl2an 494 . . . . . . 7  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  ( N  +  M
)  e.  CC )
49 npcan1 10455 . . . . . . 7  |-  ( ( N  +  M )  e.  CC  ->  (
( ( N  +  M )  -  1 )  +  1 )  =  ( N  +  M ) )
5048, 49syl 17 . . . . . 6  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  ( ( ( N  +  M )  - 
1 )  +  1 )  =  ( N  +  M ) )
5150eqcomd 2628 . . . . 5  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  ( N  +  M
)  =  ( ( ( N  +  M
)  -  1 )  +  1 ) )
5251fveq2d 6195 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  (FermatNo `  ( N  +  M ) )  =  (FermatNo `  ( (
( N  +  M
)  -  1 )  +  1 ) ) )
53 fmtnorec2 41455 . . . . 5  |-  ( ( ( N  +  M
)  -  1 )  e.  NN0  ->  (FermatNo `  (
( ( N  +  M )  -  1 )  +  1 ) )  =  ( prod_
k  e.  ( 0 ... ( ( N  +  M )  - 
1 ) ) (FermatNo `  k )  +  2 ) )
544, 53syl 17 . . . 4  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  (FermatNo `  ( (
( N  +  M
)  -  1 )  +  1 ) )  =  ( prod_ k  e.  ( 0 ... (
( N  +  M
)  -  1 ) ) (FermatNo `  k
)  +  2 ) )
5552, 54eqtrd 2656 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  (FermatNo `  ( N  +  M ) )  =  ( prod_ k  e.  ( 0 ... ( ( N  +  M )  -  1 ) ) (FermatNo `  k )  +  2 ) )
5643, 44, 55mvrraddd 10445 . 2  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  ( (FermatNo `  ( N  +  M )
)  -  2 )  =  prod_ k  e.  ( 0 ... ( ( N  +  M )  -  1 ) ) (FermatNo `  k )
)
5737, 56breqtrrd 4681 1  |-  ( ( N  e.  NN0  /\  M  e.  NN )  ->  (FermatNo `  N )  ||  ( (FermatNo `  ( N  +  M )
)  -  2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ...cfz 12326   ^cexp 12860   prod_cprod 14635    || cdvds 14983  FermatNocfmtno 41439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-fmtno 41440
This theorem is referenced by:  goldbachthlem1  41457
  Copyright terms: Public domain W3C validator