Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addlimc Structured version   Visualization version   GIF version

Theorem addlimc 39880
Description: Sum of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
addlimc.f 𝐹 = (𝑥𝐴𝐵)
addlimc.g 𝐺 = (𝑥𝐴𝐶)
addlimc.h 𝐻 = (𝑥𝐴 ↦ (𝐵 + 𝐶))
addlimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
addlimc.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
addlimc.e (𝜑𝐸 ∈ (𝐹 lim 𝐷))
addlimc.i (𝜑𝐼 ∈ (𝐺 lim 𝐷))
Assertion
Ref Expression
addlimc (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)

Proof of Theorem addlimc
Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23639 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 addlimc.e . . . 4 (𝜑𝐸 ∈ (𝐹 lim 𝐷))
31, 2sseldi 3601 . . 3 (𝜑𝐸 ∈ ℂ)
4 limccl 23639 . . . 4 (𝐺 lim 𝐷) ⊆ ℂ
5 addlimc.i . . . 4 (𝜑𝐼 ∈ (𝐺 lim 𝐷))
64, 5sseldi 3601 . . 3 (𝜑𝐼 ∈ ℂ)
73, 6addcld 10059 . 2 (𝜑 → (𝐸 + 𝐼) ∈ ℂ)
8 addlimc.b . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
9 addlimc.f . . . . . . . . . 10 𝐹 = (𝑥𝐴𝐵)
108, 9fmptd 6385 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℂ)
119, 8, 2limcmptdm 39867 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
12 limcrcl 23638 . . . . . . . . . . 11 (𝐸 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
132, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1413simp3d 1075 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
1510, 11, 14ellimc3 23643 . . . . . . . 8 (𝜑 → (𝐸 ∈ (𝐹 lim 𝐷) ↔ (𝐸 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧))))
162, 15mpbid 222 . . . . . . 7 (𝜑 → (𝐸 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧)))
1716simprd 479 . . . . . 6 (𝜑 → ∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧))
18 rphalfcl 11858 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
19 breq2 4657 . . . . . . . . 9 (𝑧 = (𝑦 / 2) → ((abs‘((𝐹𝑣) − 𝐸)) < 𝑧 ↔ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
2019imbi2d 330 . . . . . . . 8 (𝑧 = (𝑦 / 2) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
2120rexralbidv 3058 . . . . . . 7 (𝑧 = (𝑦 / 2) → (∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ↔ ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
2221rspccva 3308 . . . . . 6 ((∀𝑧 ∈ ℝ+𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < 𝑧) ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
2317, 18, 22syl2an 494 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
24 addlimc.c . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
25 addlimc.g . . . . . . . . . 10 𝐺 = (𝑥𝐴𝐶)
2624, 25fmptd 6385 . . . . . . . . 9 (𝜑𝐺:𝐴⟶ℂ)
2726, 11, 14ellimc3 23643 . . . . . . . 8 (𝜑 → (𝐼 ∈ (𝐺 lim 𝐷) ↔ (𝐼 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧))))
285, 27mpbid 222 . . . . . . 7 (𝜑 → (𝐼 ∈ ℂ ∧ ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧)))
2928simprd 479 . . . . . 6 (𝜑 → ∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧))
30 breq2 4657 . . . . . . . . 9 (𝑧 = (𝑦 / 2) → ((abs‘((𝐺𝑣) − 𝐼)) < 𝑧 ↔ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
3130imbi2d 330 . . . . . . . 8 (𝑧 = (𝑦 / 2) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3231rexralbidv 3058 . . . . . . 7 (𝑧 = (𝑦 / 2) → (∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ↔ ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3332rspccva 3308 . . . . . 6 ((∀𝑧 ∈ ℝ+𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < 𝑧) ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
3429, 18, 33syl2an 494 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
35 reeanv 3107 . . . . 5 (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) ↔ (∃𝑎 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∃𝑏 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
3623, 34, 35sylanbrc 698 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
37 ifcl 4130 . . . . . . . 8 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
38373ad2ant2 1083 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
39 nfv 1843 . . . . . . . . 9 𝑣(𝜑𝑦 ∈ ℝ+)
40 nfv 1843 . . . . . . . . 9 𝑣(𝑎 ∈ ℝ+𝑏 ∈ ℝ+)
41 nfra1 2941 . . . . . . . . . 10 𝑣𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
42 nfra1 2941 . . . . . . . . . 10 𝑣𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
4341, 42nfan 1828 . . . . . . . . 9 𝑣(∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
4439, 40, 43nf3an 1831 . . . . . . . 8 𝑣((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
45 simp11l 1172 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝜑)
46 simp2 1062 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣𝐴)
4745, 46jca 554 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝜑𝑣𝐴))
48 rpre 11839 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4948adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
50493ad2ant1 1082 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑦 ∈ ℝ)
51503ad2ant1 1082 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑦 ∈ ℝ)
52 simp13l 1176 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
53 simp3l 1089 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣𝐷)
5411sselda 3603 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣𝐴) → 𝑣 ∈ ℂ)
5545, 46, 54syl2anc 693 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑣 ∈ ℂ)
5645, 14syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝐷 ∈ ℂ)
5755, 56subcld 10392 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷) ∈ ℂ)
5857abscld 14175 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) ∈ ℝ)
5938rpred 11872 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
60593ad2ant1 1082 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
61 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ+)
6261rpred 11872 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
63623ad2ant2 1083 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑎 ∈ ℝ)
64633ad2ant1 1082 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑎 ∈ ℝ)
65 simp3r 1090 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))
66 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ+)
6766rpred 11872 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
68 min1 12020 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6962, 67, 68syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
70693ad2ant2 1083 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
71703ad2ant1 1082 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
7258, 60, 64, 65, 71ltletrd 10197 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < 𝑎)
7353, 72jca 554 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎))
74 rsp 2929 . . . . . . . . . . . 12 (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))))
7552, 46, 73, 74syl3c 66 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
7647, 51, 75jca31 557 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)))
77 simp13r 1177 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))
78673ad2ant2 1083 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → 𝑏 ∈ ℝ)
79783ad2ant1 1082 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → 𝑏 ∈ ℝ)
80 min2 12021 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
8162, 67, 80syl2anc 693 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
82813ad2ant2 1083 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
83823ad2ant1 1082 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
8458, 60, 79, 65, 83ltletrd 10197 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘(𝑣𝐷)) < 𝑏)
8553, 84jca 554 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏))
86 rsp 2929 . . . . . . . . . . 11 (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))))
8777, 46, 85, 86syl3c 66 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
888, 24addcld 10059 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℂ)
89 addlimc.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑥𝐴 ↦ (𝐵 + 𝐶))
9088, 89fmptd 6385 . . . . . . . . . . . . . . 15 (𝜑𝐻:𝐴⟶ℂ)
9190ffvelrnda 6359 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐻𝑣) ∈ ℂ)
9291ad3antrrr 766 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐻𝑣) ∈ ℂ)
93 simp-4l 806 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝜑)
9493, 7syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐸 + 𝐼) ∈ ℂ)
9592, 94subcld 10392 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) ∈ ℂ)
9695abscld 14175 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) ∈ ℝ)
9710ffvelrnda 6359 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ ℂ)
9897ad3antrrr 766 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐹𝑣) ∈ ℂ)
9993, 3syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝐸 ∈ ℂ)
10098, 99subcld 10392 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐹𝑣) − 𝐸) ∈ ℂ)
101100abscld 14175 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐹𝑣) − 𝐸)) ∈ ℝ)
10226ffvelrnda 6359 . . . . . . . . . . . . . . 15 ((𝜑𝑣𝐴) → (𝐺𝑣) ∈ ℂ)
103102ad3antrrr 766 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐺𝑣) ∈ ℂ)
10493, 6syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝐼 ∈ ℂ)
105103, 104subcld 10392 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐺𝑣) − 𝐼) ∈ ℂ)
106105abscld 14175 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐺𝑣) − 𝐼)) ∈ ℝ)
107101, 106readdcld 10069 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))) ∈ ℝ)
108 simpllr 799 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → 𝑦 ∈ ℝ)
109 nfv 1843 . . . . . . . . . . . . . . . . . 18 𝑥(𝜑𝑣𝐴)
110 nfmpt1 4747 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑥𝐴 ↦ (𝐵 + 𝐶))
11189, 110nfcxfr 2762 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐻
112 nfcv 2764 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑣
113111, 112nffv 6198 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐻𝑣)
114 nfmpt1 4747 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥𝐴𝐵)
1159, 114nfcxfr 2762 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐹
116115, 112nffv 6198 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝐹𝑣)
117 nfcv 2764 . . . . . . . . . . . . . . . . . . . 20 𝑥 +
118 nfmpt1 4747 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥𝐴𝐶)
11925, 118nfcxfr 2762 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐺
120119, 112nffv 6198 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝐺𝑣)
121116, 117, 120nfov 6676 . . . . . . . . . . . . . . . . . . 19 𝑥((𝐹𝑣) + (𝐺𝑣))
122113, 121nfeq 2776 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣))
123109, 122nfim 1825 . . . . . . . . . . . . . . . . 17 𝑥((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
124 eleq1 2689 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → (𝑥𝐴𝑣𝐴))
125124anbi2d 740 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ((𝜑𝑥𝐴) ↔ (𝜑𝑣𝐴)))
126 fveq2 6191 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → (𝐻𝑥) = (𝐻𝑣))
127 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
128 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑣 → (𝐺𝑥) = (𝐺𝑣))
129127, 128oveq12d 6668 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑣 → ((𝐹𝑥) + (𝐺𝑥)) = ((𝐹𝑣) + (𝐺𝑣)))
130126, 129eqeq12d 2637 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ((𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥)) ↔ (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣))))
131125, 130imbi12d 334 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (((𝜑𝑥𝐴) → (𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥))) ↔ ((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))))
132 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝑥𝐴)
13389fvmpt2 6291 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴 ∧ (𝐵 + 𝐶) ∈ ℂ) → (𝐻𝑥) = (𝐵 + 𝐶))
134132, 88, 133syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐻𝑥) = (𝐵 + 𝐶))
1359fvmpt2 6291 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐵 ∈ ℂ) → (𝐹𝑥) = 𝐵)
136132, 8, 135syl2anc 693 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
137136eqcomd 2628 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 = (𝐹𝑥))
13825fvmpt2 6291 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐶 ∈ ℂ) → (𝐺𝑥) = 𝐶)
139132, 24, 138syl2anc 693 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
140139eqcomd 2628 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐶 = (𝐺𝑥))
141137, 140oveq12d 6668 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) = ((𝐹𝑥) + (𝐺𝑥)))
142134, 141eqtrd 2656 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝐻𝑥) = ((𝐹𝑥) + (𝐺𝑥)))
143123, 131, 142chvar 2262 . . . . . . . . . . . . . . . 16 ((𝜑𝑣𝐴) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
144143ad3antrrr 766 . . . . . . . . . . . . . . 15 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (𝐻𝑣) = ((𝐹𝑣) + (𝐺𝑣)))
145144oveq1d 6665 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) = (((𝐹𝑣) + (𝐺𝑣)) − (𝐸 + 𝐼)))
14698, 103, 99, 104addsub4d 10439 . . . . . . . . . . . . . 14 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (((𝐹𝑣) + (𝐺𝑣)) − (𝐸 + 𝐼)) = (((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼)))
147145, 146eqtrd 2656 . . . . . . . . . . . . 13 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((𝐻𝑣) − (𝐸 + 𝐼)) = (((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼)))
148147fveq2d 6195 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) = (abs‘(((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼))))
149100, 105abstrid 14195 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘(((𝐹𝑣) − 𝐸) + ((𝐺𝑣) − 𝐼))) ≤ ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))))
150148, 149eqbrtrd 4675 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) ≤ ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))))
151 simplr 792 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2))
152 simpr 477 . . . . . . . . . . . 12 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))
153101, 106, 108, 151, 152lt2halvesd 11280 . . . . . . . . . . 11 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → ((abs‘((𝐹𝑣) − 𝐸)) + (abs‘((𝐺𝑣) − 𝐼))) < 𝑦)
15496, 107, 108, 150, 153lelttrd 10195 . . . . . . . . . 10 (((((𝜑𝑣𝐴) ∧ 𝑦 ∈ ℝ) ∧ (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)
15576, 87, 154syl2anc 693 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) ∧ 𝑣𝐴 ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)
1561553exp 1264 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → (𝑣𝐴 → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
15744, 156ralrimi 2957 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
158 breq2 4657 . . . . . . . . . . 11 (𝑤 = if(𝑎𝑏, 𝑎, 𝑏) → ((abs‘(𝑣𝐷)) < 𝑤 ↔ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)))
159158anbi2d 740 . . . . . . . . . 10 (𝑤 = if(𝑎𝑏, 𝑎, 𝑏) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) ↔ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏))))
160159imbi1d 331 . . . . . . . . 9 (𝑤 = if(𝑎𝑏, 𝑎, 𝑏) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦) ↔ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
161160ralbidv 2986 . . . . . . . 8 (𝑤 = if(𝑎𝑏, 𝑎, 𝑏) → (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦) ↔ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
162161rspcev 3309 . . . . . . 7 ((if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+ ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
16338, 157, 162syl2anc 693 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2)))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
1641633exp 1264 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → ((∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))))
165164rexlimdvv 3037 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑎) → (abs‘((𝐹𝑣) − 𝐸)) < (𝑦 / 2)) ∧ ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑏) → (abs‘((𝐺𝑣) − 𝐼)) < (𝑦 / 2))) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦)))
16636, 165mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
167166ralrimiva 2966 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))
16890, 11, 14ellimc3 23643 . 2 (𝜑 → ((𝐸 + 𝐼) ∈ (𝐻 lim 𝐷) ↔ ((𝐸 + 𝐼) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐻𝑣) − (𝐸 + 𝐼))) < 𝑦))))
1697, 167, 168mpbir2and 957 1 (𝜑 → (𝐸 + 𝐼) ∈ (𝐻 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935   + caddc 9939   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  +crp 11832  abscabs 13974   lim climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630
This theorem is referenced by:  sublimc  39884  reclimc  39885  fourierdlem53  40376  fourierdlem60  40383  fourierdlem61  40384
  Copyright terms: Public domain W3C validator