![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmsubgval | Structured version Visualization version GIF version |
Description: Subtraction in a free module. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
frlmsubval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmsubval.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmsubval.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
frlmsubval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmsubval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
frlmsubval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
frlmsubval.a | ⊢ − = (-g‘𝑅) |
frlmsubval.p | ⊢ 𝑀 = (-g‘𝑌) |
Ref | Expression |
---|---|
frlmsubgval | ⊢ (𝜑 → (𝐹𝑀𝐺) = (𝐹 ∘𝑓 − 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmsubval.p | . . . 4 ⊢ 𝑀 = (-g‘𝑌) | |
2 | frlmsubval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
3 | frlmsubval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
4 | frlmsubval.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
5 | frlmsubval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑌) | |
6 | 4, 5 | frlmpws 20094 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
7 | 2, 3, 6 | syl2anc 693 | . . . . 5 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
8 | 7 | fveq2d 6195 | . . . 4 ⊢ (𝜑 → (-g‘𝑌) = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
9 | 1, 8 | syl5eq 2668 | . . 3 ⊢ (𝜑 → 𝑀 = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
10 | 9 | oveqd 6667 | . 2 ⊢ (𝜑 → (𝐹𝑀𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺)) |
11 | rlmlmod 19205 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
12 | 2, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ LMod) |
13 | eqid 2622 | . . . . . 6 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
14 | 13 | pwslmod 18970 | . . . . 5 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod) |
15 | 12, 3, 14 | syl2anc 693 | . . . 4 ⊢ (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod) |
16 | eqid 2622 | . . . . . 6 ⊢ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) | |
17 | 4, 5, 16 | frlmlss 20095 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) |
18 | 2, 3, 17 | syl2anc 693 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) |
19 | 16 | lsssubg 18957 | . . . 4 ⊢ ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼))) |
20 | 15, 18, 19 | syl2anc 693 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼))) |
21 | frlmsubval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
22 | frlmsubval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
23 | eqid 2622 | . . . 4 ⊢ (-g‘((ringLMod‘𝑅) ↑s 𝐼)) = (-g‘((ringLMod‘𝑅) ↑s 𝐼)) | |
24 | eqid 2622 | . . . 4 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) | |
25 | eqid 2622 | . . . 4 ⊢ (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) | |
26 | 23, 24, 25 | subgsub 17606 | . . 3 ⊢ ((𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺)) |
27 | 20, 21, 22, 26 | syl3anc 1326 | . 2 ⊢ (𝜑 → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺)) |
28 | lmodgrp 18870 | . . . 4 ⊢ ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ Grp) | |
29 | 2, 11, 28 | 3syl 18 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ Grp) |
30 | eqid 2622 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
31 | 4, 30, 5 | frlmbasmap 20103 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝐹 ∈ 𝐵) → 𝐹 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) |
32 | 3, 21, 31 | syl2anc 693 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) |
33 | rlmbas 19195 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
34 | 13, 33 | pwsbas 16147 | . . . . 5 ⊢ (((ringLMod‘𝑅) ∈ Grp ∧ 𝐼 ∈ 𝑊) → ((Base‘𝑅) ↑𝑚 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
35 | 29, 3, 34 | syl2anc 693 | . . . 4 ⊢ (𝜑 → ((Base‘𝑅) ↑𝑚 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
36 | 32, 35 | eleqtrd 2703 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
37 | 4, 30, 5 | frlmbasmap 20103 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) |
38 | 3, 22, 37 | syl2anc 693 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ((Base‘𝑅) ↑𝑚 𝐼)) |
39 | 38, 35 | eleqtrd 2703 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
40 | eqid 2622 | . . . 4 ⊢ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)) | |
41 | frlmsubval.a | . . . . 5 ⊢ − = (-g‘𝑅) | |
42 | rlmsub 19198 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘(ringLMod‘𝑅)) | |
43 | 41, 42 | eqtri 2644 | . . . 4 ⊢ − = (-g‘(ringLMod‘𝑅)) |
44 | 13, 40, 43, 23 | pwssub 17529 | . . 3 ⊢ ((((ringLMod‘𝑅) ∈ Grp ∧ 𝐼 ∈ 𝑊) ∧ (𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) ∧ 𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))) → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹 ∘𝑓 − 𝐺)) |
45 | 29, 3, 36, 39, 44 | syl22anc 1327 | . 2 ⊢ (𝜑 → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹 ∘𝑓 − 𝐺)) |
46 | 10, 27, 45 | 3eqtr2d 2662 | 1 ⊢ (𝜑 → (𝐹𝑀𝐺) = (𝐹 ∘𝑓 − 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 ∘𝑓 cof 6895 ↑𝑚 cmap 7857 Basecbs 15857 ↾s cress 15858 ↑s cpws 16107 Grpcgrp 17422 -gcsg 17424 SubGrpcsubg 17588 Ringcrg 18547 LModclmod 18863 LSubSpclss 18932 ringLModcrglmod 19169 freeLMod cfrlm 20090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-hom 15966 df-cco 15967 df-0g 16102 df-prds 16108 df-pws 16110 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-mgp 18490 df-ur 18502 df-ring 18549 df-subrg 18778 df-lmod 18865 df-lss 18933 df-sra 19172 df-rgmod 19173 df-dsmm 20076 df-frlm 20091 |
This theorem is referenced by: matsubgcell 20240 rrxds 23181 |
Copyright terms: Public domain | W3C validator |