MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvscafval Structured version   Visualization version   GIF version

Theorem frlmvscafval 20109
Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
frlmvscafval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmvscafval.b 𝐵 = (Base‘𝑌)
frlmvscafval.k 𝐾 = (Base‘𝑅)
frlmvscafval.i (𝜑𝐼𝑊)
frlmvscafval.a (𝜑𝐴𝐾)
frlmvscafval.x (𝜑𝑋𝐵)
frlmvscafval.v = ( ·𝑠𝑌)
frlmvscafval.t · = (.r𝑅)
Assertion
Ref Expression
frlmvscafval (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋))

Proof of Theorem frlmvscafval
StepHypRef Expression
1 frlmvscafval.x . . . . . . 7 (𝜑𝑋𝐵)
2 frlmvscafval.y . . . . . . . 8 𝑌 = (𝑅 freeLMod 𝐼)
3 frlmvscafval.b . . . . . . . 8 𝐵 = (Base‘𝑌)
42, 3frlmrcl 20101 . . . . . . 7 (𝑋𝐵𝑅 ∈ V)
51, 4syl 17 . . . . . 6 (𝜑𝑅 ∈ V)
6 frlmvscafval.i . . . . . 6 (𝜑𝐼𝑊)
72, 3frlmpws 20094 . . . . . 6 ((𝑅 ∈ V ∧ 𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
85, 6, 7syl2anc 693 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
98fveq2d 6195 . . . 4 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
10 frlmvscafval.v . . . 4 = ( ·𝑠𝑌)
11 fvex 6201 . . . . . 6 (Base‘𝑌) ∈ V
123, 11eqeltri 2697 . . . . 5 𝐵 ∈ V
13 eqid 2622 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
14 eqid 2622 . . . . . 6 ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))
1513, 14ressvsca 16032 . . . . 5 (𝐵 ∈ V → ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
1612, 15ax-mp 5 . . . 4 ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
179, 10, 163eqtr4g 2681 . . 3 (𝜑 = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)))
1817oveqd 6667 . 2 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋))
19 eqid 2622 . . 3 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
20 eqid 2622 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
21 frlmvscafval.t . . . 4 · = (.r𝑅)
22 rlmvsca 19202 . . . 4 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
2321, 22eqtri 2644 . . 3 · = ( ·𝑠 ‘(ringLMod‘𝑅))
24 eqid 2622 . . 3 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
25 eqid 2622 . . 3 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
26 fvexd 6203 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ V)
27 frlmvscafval.a . . . 4 (𝜑𝐴𝐾)
28 frlmvscafval.k . . . . 5 𝐾 = (Base‘𝑅)
29 rlmsca 19200 . . . . . . 7 (𝑅 ∈ V → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
305, 29syl 17 . . . . . 6 (𝜑𝑅 = (Scalar‘(ringLMod‘𝑅)))
3130fveq2d 6195 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
3228, 31syl5eq 2668 . . . 4 (𝜑𝐾 = (Base‘(Scalar‘(ringLMod‘𝑅))))
3327, 32eleqtrd 2703 . . 3 (𝜑𝐴 ∈ (Base‘(Scalar‘(ringLMod‘𝑅))))
348fveq2d 6195 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
353, 34syl5eq 2668 . . . . 5 (𝜑𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
3613, 20ressbasss 15932 . . . . 5 (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))
3735, 36syl6eqss 3655 . . . 4 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3837, 1sseldd 3604 . . 3 (𝜑𝑋 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3919, 20, 23, 14, 24, 25, 26, 6, 33, 38pwsvscafval 16154 . 2 (𝜑 → (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋))
4018, 39eqtrd 2656 1 (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177   × cxp 5112  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Basecbs 15857  s cress 15858  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  s cpws 16107  ringLModcrglmod 19169   freeLMod cfrlm 20090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091
This theorem is referenced by:  frlmvscaval  20110  uvcresum  20132  matvsca2  20234  matunitlindflem1  33405  matunitlindflem2  33406  zlmodzxzscm  42135  aacllem  42547
  Copyright terms: Public domain W3C validator