MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matvsca2 Structured version   Visualization version   GIF version

Theorem matvsca2 20234
Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
matvsca2.a 𝐴 = (𝑁 Mat 𝑅)
matvsca2.b 𝐵 = (Base‘𝐴)
matvsca2.k 𝐾 = (Base‘𝑅)
matvsca2.v · = ( ·𝑠𝐴)
matvsca2.t × = (.r𝑅)
matvsca2.c 𝐶 = (𝑁 × 𝑁)
Assertion
Ref Expression
matvsca2 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘𝑓 × 𝑌))

Proof of Theorem matvsca2
StepHypRef Expression
1 matvsca2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 matvsca2.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 20218 . . . . . 6 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43adantl 482 . . . . 5 ((𝑋𝐾𝑌𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5 eqid 2622 . . . . . 6 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
61, 5matvsca 20222 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠𝐴))
74, 6syl 17 . . . 4 ((𝑋𝐾𝑌𝐵) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠𝐴))
8 matvsca2.v . . . 4 · = ( ·𝑠𝐴)
97, 8syl6eqr 2674 . . 3 ((𝑋𝐾𝑌𝐵) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = · )
109oveqd 6667 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 · 𝑌))
11 eqid 2622 . . . 4 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
12 matvsca2.k . . . 4 𝐾 = (Base‘𝑅)
134simpld 475 . . . . 5 ((𝑋𝐾𝑌𝐵) → 𝑁 ∈ Fin)
14 xpfi 8231 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1513, 13, 14syl2anc 693 . . . 4 ((𝑋𝐾𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
16 simpl 473 . . . 4 ((𝑋𝐾𝑌𝐵) → 𝑋𝐾)
17 simpr 477 . . . . 5 ((𝑋𝐾𝑌𝐵) → 𝑌𝐵)
181, 5matbas 20219 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
194, 18syl 17 . . . . . 6 ((𝑋𝐾𝑌𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
2019, 2syl6eqr 2674 . . . . 5 ((𝑋𝐾𝑌𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = 𝐵)
2117, 20eleqtrrd 2704 . . . 4 ((𝑋𝐾𝑌𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
22 eqid 2622 . . . 4 ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))
23 matvsca2.t . . . 4 × = (.r𝑅)
245, 11, 12, 15, 16, 21, 22, 23frlmvscafval 20109 . . 3 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘𝑓 × 𝑌))
25 matvsca2.c . . . . 5 𝐶 = (𝑁 × 𝑁)
2625xpeq1i 5135 . . . 4 (𝐶 × {𝑋}) = ((𝑁 × 𝑁) × {𝑋})
2726oveq1i 6660 . . 3 ((𝐶 × {𝑋}) ∘𝑓 × 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘𝑓 × 𝑌)
2824, 27syl6eqr 2674 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = ((𝐶 × {𝑋}) ∘𝑓 × 𝑌))
2910, 28eqtr3d 2658 1 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘𝑓 × 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177   × cxp 5112  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Fincfn 7955  Basecbs 15857  .rcmulr 15942   ·𝑠 cvsca 15945   freeLMod cfrlm 20090   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mat 20214
This theorem is referenced by:  matvscacell  20242  matassa  20250  matsc  20256  mattposvs  20261  mat1dimscm  20281
  Copyright terms: Public domain W3C validator