MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfac2 Structured version   Visualization version   GIF version

Theorem logfac2 24942
Description: Another expression for the logarithm of a factorial, in terms of the von Mangoldt function. Equation 9.2.7 of [Shapiro], p. 329. (Contributed by Mario Carneiro, 15-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Assertion
Ref Expression
logfac2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
Distinct variable group:   𝐴,𝑘

Proof of Theorem logfac2
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flge0nn0 12621 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
2 logfac 24347 . . 3 ((⌊‘𝐴) ∈ ℕ0 → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
31, 2syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
4 fzfid 12772 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (1...(⌊‘𝐴)) ∈ Fin)
5 fzfid 12772 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘𝐴)) ∈ Fin)
6 ssrab2 3687 . . . . 5 {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ⊆ (1...(⌊‘𝐴))
7 ssfi 8180 . . . . 5 (((1...(⌊‘𝐴)) ∈ Fin ∧ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ⊆ (1...(⌊‘𝐴))) → {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ∈ Fin)
85, 6, 7sylancl 694 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ∈ Fin)
9 flcl 12596 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
109adantr 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ)
11 fznn 12408 . . . . . . . 8 ((⌊‘𝐴) ∈ ℤ → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴))))
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝑘 ∈ (1...(⌊‘𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴))))
1312anbi1d 741 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ ((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
14 nnre 11027 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
1514ad2antlr 763 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ∈ ℝ)
16 elfznn 12370 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
1716ad2antrl 764 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑛 ∈ ℕ)
1817nnred 11035 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑛 ∈ ℝ)
19 reflcl 12597 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
2019ad3antrrr 766 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → (⌊‘𝐴) ∈ ℝ)
21 simprr 796 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘𝑛)
22 nnz 11399 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
2322ad2antlr 763 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ∈ ℤ)
24 dvdsle 15032 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑘𝑛𝑘𝑛))
2523, 17, 24syl2anc 693 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → (𝑘𝑛𝑘𝑛))
2621, 25mpd 15 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘𝑛)
27 elfzle2 12345 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ≤ (⌊‘𝐴))
2827ad2antrl 764 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑛 ≤ (⌊‘𝐴))
2915, 18, 20, 26, 28letrd 10194 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ≤ (⌊‘𝐴))
3029expl 648 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) → 𝑘 ≤ (⌊‘𝐴)))
3130pm4.71rd 667 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)))))
32 an12 838 . . . . . . 7 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛)) ↔ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)))
33 anass 681 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑘 ∈ ℕ ∧ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
34 an12 838 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))) ↔ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
3533, 34bitri 264 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑘 ≤ (⌊‘𝐴) ∧ (𝑘 ∈ ℕ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
3631, 32, 353bitr4g 303 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛)) ↔ ((𝑘 ∈ ℕ ∧ 𝑘 ≤ (⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))))
3713, 36bitr4d 271 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛))))
38 breq2 4657 . . . . . . 7 (𝑥 = 𝑛 → (𝑘𝑥𝑘𝑛))
3938elrab 3363 . . . . . 6 (𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛))
4039anbi2i 730 . . . . 5 ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) ↔ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘𝑛)))
41 breq1 4656 . . . . . . 7 (𝑥 = 𝑘 → (𝑥𝑛𝑘𝑛))
4241elrab 3363 . . . . . 6 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑛))
4342anbi2i 730 . . . . 5 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛}) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ (𝑘 ∈ ℕ ∧ 𝑘𝑛)))
4437, 40, 433bitr4g 303 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) ↔ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛})))
45 elfznn 12370 . . . . . . . 8 (𝑘 ∈ (1...(⌊‘𝐴)) → 𝑘 ∈ ℕ)
4645adantl 482 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝑘 ∈ ℕ)
47 vmacl 24844 . . . . . . 7 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
4846, 47syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑘) ∈ ℝ)
4948recnd 10068 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (Λ‘𝑘) ∈ ℂ)
5049adantrr 753 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑘 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥})) → (Λ‘𝑘) ∈ ℂ)
514, 4, 8, 44, 50fsumcom2 14505 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘))
52 fsumconst 14522 . . . . . 6 (({𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} ∈ Fin ∧ (Λ‘𝑘) ∈ ℂ) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = ((#‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) · (Λ‘𝑘)))
538, 49, 52syl2anc 693 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = ((#‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) · (Λ‘𝑘)))
54 fzfid 12772 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑘))) ∈ Fin)
55 simpll 790 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
56 eqid 2622 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚)) = (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚))
5755, 46, 56dvdsflf1o 24913 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚)):(1...(⌊‘(𝐴 / 𝑘)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥})
58 f1oeng 7974 . . . . . . . . 9 (((1...(⌊‘(𝐴 / 𝑘))) ∈ Fin ∧ (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑘))) ↦ (𝑘 · 𝑚)):(1...(⌊‘(𝐴 / 𝑘)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) → (1...(⌊‘(𝐴 / 𝑘))) ≈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥})
5954, 57, 58syl2anc 693 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑘))) ≈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥})
60 hasheni 13136 . . . . . . . 8 ((1...(⌊‘(𝐴 / 𝑘))) ≈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} → (#‘(1...(⌊‘(𝐴 / 𝑘)))) = (#‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}))
6159, 60syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (#‘(1...(⌊‘(𝐴 / 𝑘)))) = (#‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}))
62 simpl 473 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
63 nndivre 11056 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝐴 / 𝑘) ∈ ℝ)
6462, 45, 63syl2an 494 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑘) ∈ ℝ)
65 nngt0 11049 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 < 𝑘)
6614, 65jca 554 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
6745, 66syl 17 . . . . . . . . . 10 (𝑘 ∈ (1...(⌊‘𝐴)) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
68 divge0 10892 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → 0 ≤ (𝐴 / 𝑘))
6967, 68sylan2 491 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → 0 ≤ (𝐴 / 𝑘))
70 flge0nn0 12621 . . . . . . . . 9 (((𝐴 / 𝑘) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝑘)) → (⌊‘(𝐴 / 𝑘)) ∈ ℕ0)
7164, 69, 70syl2anc 693 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (⌊‘(𝐴 / 𝑘)) ∈ ℕ0)
72 hashfz1 13134 . . . . . . . 8 ((⌊‘(𝐴 / 𝑘)) ∈ ℕ0 → (#‘(1...(⌊‘(𝐴 / 𝑘)))) = (⌊‘(𝐴 / 𝑘)))
7371, 72syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (#‘(1...(⌊‘(𝐴 / 𝑘)))) = (⌊‘(𝐴 / 𝑘)))
7461, 73eqtr3d 2658 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (#‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) = (⌊‘(𝐴 / 𝑘)))
7574oveq1d 6665 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → ((#‘{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥}) · (Λ‘𝑘)) = ((⌊‘(𝐴 / 𝑘)) · (Λ‘𝑘)))
7664flcld 12599 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (⌊‘(𝐴 / 𝑘)) ∈ ℤ)
7776zcnd 11483 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → (⌊‘(𝐴 / 𝑘)) ∈ ℂ)
7877, 49mulcomd 10061 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → ((⌊‘(𝐴 / 𝑘)) · (Λ‘𝑘)) = ((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
7953, 75, 783eqtrd 2660 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑘 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = ((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
8079sumeq2dv 14433 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑘 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑘𝑥} (Λ‘𝑘) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
8116adantl 482 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
82 vmasum 24941 . . . . 5 (𝑛 ∈ ℕ → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘) = (log‘𝑛))
8381, 82syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘) = (log‘𝑛))
8483sumeq2dv 14433 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑛} (Λ‘𝑘) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
8551, 80, 843eqtr3d 2664 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
863, 85eqtr4d 2659 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑘 ∈ (1...(⌊‘𝐴))((Λ‘𝑘) · (⌊‘(𝐴 / 𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  wss 3574   class class class wbr 4653  cmpt 4729  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cen 7952  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  ...cfz 12326  cfl 12591  !cfa 13060  #chash 13117  Σcsu 14416  cdvds 14983  logclog 24301  Λcvma 24818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-vma 24824
This theorem is referenced by:  vmadivsum  25171
  Copyright terms: Public domain W3C validator