Proof of Theorem fsumparts
| Step | Hyp | Ref
| Expression |
| 1 | | sum0 14452 |
. . . 4
⊢
Σ𝑗 ∈
∅ (𝐵 · (𝑋 − 𝑊)) = 0 |
| 2 | | 0m0e0 11130 |
. . . 4
⊢ (0
− 0) = 0 |
| 3 | 1, 2 | eqtr4i 2647 |
. . 3
⊢
Σ𝑗 ∈
∅ (𝐵 · (𝑋 − 𝑊)) = (0 − 0) |
| 4 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → 𝑁 = 𝑀) |
| 5 | 4 | oveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → (𝑀..^𝑁) = (𝑀..^𝑀)) |
| 6 | | fzo0 12492 |
. . . . 5
⊢ (𝑀..^𝑀) = ∅ |
| 7 | 5, 6 | syl6eq 2672 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → (𝑀..^𝑁) = ∅) |
| 8 | 7 | sumeq1d 14431 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = Σ𝑗 ∈ ∅ (𝐵 · (𝑋 − 𝑊))) |
| 9 | | fsumparts.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 10 | | eluzfz1 12348 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 11 | 9, 10 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 12 | | eqtr3 2643 |
. . . . . . . . . . . 12
⊢ ((𝑘 = 𝑀 ∧ 𝑁 = 𝑀) → 𝑘 = 𝑁) |
| 13 | | fsumparts.e |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑁 → (𝐴 = 𝐸 ∧ 𝑉 = 𝑍)) |
| 14 | | oveq12 6659 |
. . . . . . . . . . . 12
⊢ ((𝐴 = 𝐸 ∧ 𝑉 = 𝑍) → (𝐴 · 𝑉) = (𝐸 · 𝑍)) |
| 15 | 12, 13, 14 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝑘 = 𝑀 ∧ 𝑁 = 𝑀) → (𝐴 · 𝑉) = (𝐸 · 𝑍)) |
| 16 | | fsumparts.d |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑀 → (𝐴 = 𝐷 ∧ 𝑉 = 𝑌)) |
| 17 | | oveq12 6659 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = 𝐷 ∧ 𝑉 = 𝑌) → (𝐴 · 𝑉) = (𝐷 · 𝑌)) |
| 18 | 16, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑀 → (𝐴 · 𝑉) = (𝐷 · 𝑌)) |
| 19 | 18 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑘 = 𝑀 ∧ 𝑁 = 𝑀) → (𝐴 · 𝑉) = (𝐷 · 𝑌)) |
| 20 | 15, 19 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ ((𝑘 = 𝑀 ∧ 𝑁 = 𝑀) → ((𝐴 · 𝑉) = (𝐴 · 𝑉) ↔ (𝐸 · 𝑍) = (𝐷 · 𝑌))) |
| 21 | 20 | pm5.74da 723 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → ((𝑁 = 𝑀 → (𝐴 · 𝑉) = (𝐴 · 𝑉)) ↔ (𝑁 = 𝑀 → (𝐸 · 𝑍) = (𝐷 · 𝑌)))) |
| 22 | | eqidd 2623 |
. . . . . . . . 9
⊢ (𝑁 = 𝑀 → (𝐴 · 𝑉) = (𝐴 · 𝑉)) |
| 23 | 21, 22 | vtoclg 3266 |
. . . . . . . 8
⊢ (𝑀 ∈ (𝑀...𝑁) → (𝑁 = 𝑀 → (𝐸 · 𝑍) = (𝐷 · 𝑌))) |
| 24 | 23 | imp 445 |
. . . . . . 7
⊢ ((𝑀 ∈ (𝑀...𝑁) ∧ 𝑁 = 𝑀) → (𝐸 · 𝑍) = (𝐷 · 𝑌)) |
| 25 | 11, 24 | sylan 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → (𝐸 · 𝑍) = (𝐷 · 𝑌)) |
| 26 | 25 | oveq1d 6665 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → ((𝐸 · 𝑍) − (𝐷 · 𝑌)) = ((𝐷 · 𝑌) − (𝐷 · 𝑌))) |
| 27 | | fsumparts.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| 28 | 27 | ralrimiva 2966 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
| 29 | 16 | simpld 475 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) |
| 30 | 29 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ)) |
| 31 | 30 | rspcv 3305 |
. . . . . . . . 9
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝐷 ∈ ℂ)) |
| 32 | 11, 28, 31 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 33 | | fsumparts.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ) |
| 34 | 33 | ralrimiva 2966 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ) |
| 35 | 16 | simprd 479 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑀 → 𝑉 = 𝑌) |
| 36 | 35 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑀 → (𝑉 ∈ ℂ ↔ 𝑌 ∈ ℂ)) |
| 37 | 36 | rspcv 3305 |
. . . . . . . . 9
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ → 𝑌 ∈ ℂ)) |
| 38 | 11, 34, 37 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 39 | 32, 38 | mulcld 10060 |
. . . . . . 7
⊢ (𝜑 → (𝐷 · 𝑌) ∈ ℂ) |
| 40 | 39 | subidd 10380 |
. . . . . 6
⊢ (𝜑 → ((𝐷 · 𝑌) − (𝐷 · 𝑌)) = 0) |
| 41 | 40 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → ((𝐷 · 𝑌) − (𝐷 · 𝑌)) = 0) |
| 42 | 26, 41 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → ((𝐸 · 𝑍) − (𝐷 · 𝑌)) = 0) |
| 43 | 7 | sumeq1d 14431 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋) = Σ𝑗 ∈ ∅ ((𝐶 − 𝐵) · 𝑋)) |
| 44 | | sum0 14452 |
. . . . 5
⊢
Σ𝑗 ∈
∅ ((𝐶 − 𝐵) · 𝑋) = 0 |
| 45 | 43, 44 | syl6eq 2672 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋) = 0) |
| 46 | 42, 45 | oveq12d 6668 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋)) = (0 − 0)) |
| 47 | 3, 8, 46 | 3eqtr4a 2682 |
. 2
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋))) |
| 48 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) |
| 49 | | eluzel2 11692 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 50 | 9, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 51 | 50 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℤ) |
| 52 | | fzp1ss 12392 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 53 | 51, 52 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 54 | 53 | sselda 3603 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
| 55 | 27, 33 | mulcld 10060 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐴 · 𝑉) ∈ ℂ) |
| 56 | 55 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐴 · 𝑉) ∈ ℂ) |
| 57 | 54, 56 | syldan 487 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐴 · 𝑉) ∈ ℂ) |
| 58 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝑘 = 𝑁 → (𝐴 · 𝑉) = (𝐸 · 𝑍)) |
| 59 | 48, 57, 58 | fsumm1 14480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐴 · 𝑉) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉) + (𝐸 · 𝑍))) |
| 60 | | eluzelz 11697 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 61 | 9, 60 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 62 | 61 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑁 ∈ ℤ) |
| 63 | | fzoval 12471 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 64 | 62, 63 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 65 | 51 | zcnd 11483 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℂ) |
| 66 | | ax-1cn 9994 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
| 67 | | pncan 10287 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑀 + 1)
− 1) = 𝑀) |
| 68 | 65, 66, 67 | sylancl 694 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑀 + 1) − 1) = 𝑀) |
| 69 | 68 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀...(𝑁 − 1))) |
| 70 | 64, 69 | eqtr4d 2659 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑀..^𝑁) = (((𝑀 + 1) − 1)...(𝑁 − 1))) |
| 71 | 70 | sumeq1d 14431 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))(𝐶 · 𝑋)) |
| 72 | | 1zzd 11408 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 1 ∈
ℤ) |
| 73 | 51 | peano2zd 11485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑀 + 1) ∈
ℤ) |
| 74 | | fsumparts.c |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶 ∧ 𝑉 = 𝑋)) |
| 75 | | oveq12 6659 |
. . . . . . . . . . 11
⊢ ((𝐴 = 𝐶 ∧ 𝑉 = 𝑋) → (𝐴 · 𝑉) = (𝐶 · 𝑋)) |
| 76 | 74, 75 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑗 + 1) → (𝐴 · 𝑉) = (𝐶 · 𝑋)) |
| 77 | 72, 73, 62, 57, 76 | fsumshftm 14513 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐴 · 𝑉) = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))(𝐶 · 𝑋)) |
| 78 | 71, 77 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐴 · 𝑉)) |
| 79 | | fzoval 12471 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1))) |
| 80 | 62, 79 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1))) |
| 81 | 80 | sumeq1d 14431 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉)) |
| 82 | 81 | oveq1d 6665 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐸 · 𝑍)) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉) + (𝐸 · 𝑍))) |
| 83 | 59, 78, 82 | 3eqtr4d 2666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐸 · 𝑍))) |
| 84 | | fzofi 12773 |
. . . . . . . . . 10
⊢ ((𝑀 + 1)..^𝑁) ∈ Fin |
| 85 | 84 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) ∈ Fin) |
| 86 | | uzid 11702 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 87 | | peano2uz 11741 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈
(ℤ≥‘𝑀) → (𝑀 + 1) ∈
(ℤ≥‘𝑀)) |
| 88 | | fzoss1 12495 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 1) ∈
(ℤ≥‘𝑀) → ((𝑀 + 1)..^𝑁) ⊆ (𝑀..^𝑁)) |
| 89 | 51, 86, 87, 88 | 4syl 19 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) ⊆ (𝑀..^𝑁)) |
| 90 | 89 | sselda 3603 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑘 ∈ (𝑀..^𝑁)) |
| 91 | | elfzofz 12485 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁)) |
| 92 | 91, 55 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴 · 𝑉) ∈ ℂ) |
| 93 | 92 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴 · 𝑉) ∈ ℂ) |
| 94 | 90, 93 | syldan 487 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝐴 · 𝑉) ∈ ℂ) |
| 95 | 85, 94 | fsumcl 14464 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) ∈ ℂ) |
| 96 | | eluzfz2 12349 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| 97 | 9, 96 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 98 | 13 | simpld 475 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) |
| 99 | 98 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
| 100 | 99 | rspcv 3305 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝐸 ∈ ℂ)) |
| 101 | 97, 28, 100 | sylc 65 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ ℂ) |
| 102 | 13 | simprd 479 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑁 → 𝑉 = 𝑍) |
| 103 | 102 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑁 → (𝑉 ∈ ℂ ↔ 𝑍 ∈ ℂ)) |
| 104 | 103 | rspcv 3305 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ → 𝑍 ∈ ℂ)) |
| 105 | 97, 34, 104 | sylc 65 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ ℂ) |
| 106 | 101, 105 | mulcld 10060 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 · 𝑍) ∈ ℂ) |
| 107 | 106 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐸 · 𝑍) ∈ ℂ) |
| 108 | 95, 107 | addcomd 10238 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐸 · 𝑍)) = ((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉))) |
| 109 | 83, 108 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = ((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉))) |
| 110 | 109 | oveq1d 6665 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)) = (((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋))) |
| 111 | | fzofzp1 12565 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁)) |
| 112 | 74 | simpld 475 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) |
| 113 | 112 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
| 114 | 113 | rspccva 3308 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
(𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ) |
| 115 | 28, 111, 114 | syl2an 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ) |
| 116 | | elfzofz 12485 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁)) |
| 117 | | fsumparts.b |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝐴 = 𝐵 ∧ 𝑉 = 𝑊)) |
| 118 | 117 | simpld 475 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) |
| 119 | 118 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 120 | 119 | rspccva 3308 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
(𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
| 121 | 28, 116, 120 | syl2an 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ) |
| 122 | 74 | simprd 479 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑗 + 1) → 𝑉 = 𝑋) |
| 123 | 122 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑗 + 1) → (𝑉 ∈ ℂ ↔ 𝑋 ∈ ℂ)) |
| 124 | 123 | rspccva 3308 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
(𝑀...𝑁)𝑉 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝑋 ∈ ℂ) |
| 125 | 34, 111, 124 | syl2an 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ) |
| 126 | 115, 121,
125 | subdird 10487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝐶 − 𝐵) · 𝑋) = ((𝐶 · 𝑋) − (𝐵 · 𝑋))) |
| 127 | 126 | sumeq2dv 14433 |
. . . . . . 7
⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋) = Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 · 𝑋) − (𝐵 · 𝑋))) |
| 128 | | fzofi 12773 |
. . . . . . . . 9
⊢ (𝑀..^𝑁) ∈ Fin |
| 129 | 128 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑀..^𝑁) ∈ Fin) |
| 130 | 115, 125 | mulcld 10060 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝐶 · 𝑋) ∈ ℂ) |
| 131 | 121, 125 | mulcld 10060 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝐵 · 𝑋) ∈ ℂ) |
| 132 | 129, 130,
131 | fsumsub 14520 |
. . . . . . 7
⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 · 𝑋) − (𝐵 · 𝑋)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋))) |
| 133 | 127, 132 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋))) |
| 134 | 133 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋))) |
| 135 | 129, 131 | fsumcl 14464 |
. . . . . . 7
⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) ∈ ℂ) |
| 136 | 135 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) ∈ ℂ) |
| 137 | 107, 136,
95 | subsub3d 10422 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉))) = (((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋))) |
| 138 | 110, 134,
137 | 3eqtr4d 2666 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋) = ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))) |
| 139 | 138 | oveq2d 6666 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉))))) |
| 140 | 39 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐷 · 𝑌) ∈ ℂ) |
| 141 | 136, 95 | subcld 10392 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) ∈ ℂ) |
| 142 | 107, 140,
141 | nnncan1d 10426 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))) = ((Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − (𝐷 · 𝑌))) |
| 143 | 95, 140 | addcomd 10238 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉))) |
| 144 | | eluzp1m1 11711 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
| 145 | 50, 144 | sylan 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
| 146 | 64 | eleq2d 2687 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑘 ∈ (𝑀..^𝑁) ↔ 𝑘 ∈ (𝑀...(𝑁 − 1)))) |
| 147 | 146 | biimpar 502 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀..^𝑁)) |
| 148 | 147, 93 | syldan 487 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐴 · 𝑉) ∈ ℂ) |
| 149 | 145, 148,
18 | fsum1p 14482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))(𝐴 · 𝑉) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉))) |
| 150 | 64 | sumeq1d 14431 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉) = Σ𝑘 ∈ (𝑀...(𝑁 − 1))(𝐴 · 𝑉)) |
| 151 | 81 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉))) |
| 152 | 149, 150,
151 | 3eqtr4d 2666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉))) |
| 153 | 143, 152 | eqtr4d 2659 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉)) |
| 154 | | oveq12 6659 |
. . . . . . . 8
⊢ ((𝐴 = 𝐵 ∧ 𝑉 = 𝑊) → (𝐴 · 𝑉) = (𝐵 · 𝑊)) |
| 155 | 117, 154 | syl 17 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → (𝐴 · 𝑉) = (𝐵 · 𝑊)) |
| 156 | 155 | cbvsumv 14426 |
. . . . . 6
⊢
Σ𝑘 ∈
(𝑀..^𝑁)(𝐴 · 𝑉) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊) |
| 157 | 153, 156 | syl6eq 2672 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)) |
| 158 | 157 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌))) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊))) |
| 159 | 136, 95, 140 | subsub4d 10423 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − (𝐷 · 𝑌)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)))) |
| 160 | 117 | simprd 479 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → 𝑉 = 𝑊) |
| 161 | 160 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝑉 ∈ ℂ ↔ 𝑊 ∈ ℂ)) |
| 162 | 161 | rspccva 3308 |
. . . . . . . . 9
⊢
((∀𝑘 ∈
(𝑀...𝑁)𝑉 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑊 ∈ ℂ) |
| 163 | 34, 116, 162 | syl2an 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑊 ∈ ℂ) |
| 164 | 121, 125,
163 | subdid 10486 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝐵 · (𝑋 − 𝑊)) = ((𝐵 · 𝑋) − (𝐵 · 𝑊))) |
| 165 | 164 | sumeq2dv 14433 |
. . . . . 6
⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = Σ𝑗 ∈ (𝑀..^𝑁)((𝐵 · 𝑋) − (𝐵 · 𝑊))) |
| 166 | 121, 163 | mulcld 10060 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝐵 · 𝑊) ∈ ℂ) |
| 167 | 129, 131,
166 | fsumsub 14520 |
. . . . . 6
⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐵 · 𝑋) − (𝐵 · 𝑊)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊))) |
| 168 | 165, 167 | eqtrd 2656 |
. . . . 5
⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊))) |
| 169 | 168 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊))) |
| 170 | 158, 159,
169 | 3eqtr4d 2666 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − (𝐷 · 𝑌)) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊))) |
| 171 | 139, 142,
170 | 3eqtrrd 2661 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋))) |
| 172 | | uzp1 11721 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 173 | 9, 172 | syl 17 |
. 2
⊢ (𝜑 → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 174 | 47, 171, 173 | mpjaodan 827 |
1
⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋 − 𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 − 𝐵) · 𝑋))) |