| Step | Hyp | Ref
| Expression |
| 1 | | plyf 23954 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘ℝ)
→ 𝐹:ℂ⟶ℂ) |
| 2 | | ffn 6045 |
. . . . 5
⊢ (𝐹:ℂ⟶ℂ →
𝐹 Fn
ℂ) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝐹 ∈ (Poly‘ℝ)
→ 𝐹 Fn
ℂ) |
| 4 | | ovex 6678 |
. . . . . 6
⊢ (𝑥↑𝐷) ∈ V |
| 5 | 4 | rgenw 2924 |
. . . . 5
⊢
∀𝑥 ∈
ℝ+ (𝑥↑𝐷) ∈ V |
| 6 | | signsplypnf.g |
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ ℝ+ ↦ (𝑥↑𝐷)) |
| 7 | 6 | fnmpt 6020 |
. . . . 5
⊢
(∀𝑥 ∈
ℝ+ (𝑥↑𝐷) ∈ V → 𝐺 Fn ℝ+) |
| 8 | 5, 7 | mp1i 13 |
. . . 4
⊢ (𝐹 ∈ (Poly‘ℝ)
→ 𝐺 Fn
ℝ+) |
| 9 | | cnex 10017 |
. . . . 5
⊢ ℂ
∈ V |
| 10 | 9 | a1i 11 |
. . . 4
⊢ (𝐹 ∈ (Poly‘ℝ)
→ ℂ ∈ V) |
| 11 | | reex 10027 |
. . . . . 6
⊢ ℝ
∈ V |
| 12 | | rpssre 11843 |
. . . . . 6
⊢
ℝ+ ⊆ ℝ |
| 13 | 11, 12 | ssexi 4803 |
. . . . 5
⊢
ℝ+ ∈ V |
| 14 | 13 | a1i 11 |
. . . 4
⊢ (𝐹 ∈ (Poly‘ℝ)
→ ℝ+ ∈ V) |
| 15 | | ax-resscn 9993 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
| 16 | 12, 15 | sstri 3612 |
. . . . 5
⊢
ℝ+ ⊆ ℂ |
| 17 | | sseqin2 3817 |
. . . . 5
⊢
(ℝ+ ⊆ ℂ ↔ (ℂ ∩
ℝ+) = ℝ+) |
| 18 | 16, 17 | mpbi 220 |
. . . 4
⊢ (ℂ
∩ ℝ+) = ℝ+ |
| 19 | | signsply0.c |
. . . . 5
⊢ 𝐶 = (coeff‘𝐹) |
| 20 | | signsply0.d |
. . . . 5
⊢ 𝐷 = (deg‘𝐹) |
| 21 | 19, 20 | coeid2 23995 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈ ℂ)
→ (𝐹‘𝑥) = Σ𝑘 ∈ (0...𝐷)((𝐶‘𝑘) · (𝑥↑𝑘))) |
| 22 | 6 | fvmpt2 6291 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ (𝑥↑𝐷) ∈ V) → (𝐺‘𝑥) = (𝑥↑𝐷)) |
| 23 | 4, 22 | mpan2 707 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ (𝐺‘𝑥) = (𝑥↑𝐷)) |
| 24 | 23 | adantl 482 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → (𝐺‘𝑥) = (𝑥↑𝐷)) |
| 25 | 3, 8, 10, 14, 18, 21, 24 | offval 6904 |
. . 3
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (𝐹
∘𝑓 / 𝐺) = (𝑥 ∈ ℝ+ ↦
(Σ𝑘 ∈ (0...𝐷)((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)))) |
| 26 | | fzfid 12772 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → (0...𝐷) ∈ Fin) |
| 27 | 16 | a1i 11 |
. . . . . . . 8
⊢ (𝐹 ∈ (Poly‘ℝ)
→ ℝ+ ⊆ ℂ) |
| 28 | 27 | sselda 3603 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → 𝑥 ∈ ℂ) |
| 29 | | dgrcl 23989 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (deg‘𝐹) ∈
ℕ0) |
| 30 | 20, 29 | syl5eqel 2705 |
. . . . . . . 8
⊢ (𝐹 ∈ (Poly‘ℝ)
→ 𝐷 ∈
ℕ0) |
| 31 | 30 | adantr 481 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → 𝐷 ∈
ℕ0) |
| 32 | 28, 31 | expcld 13008 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → (𝑥↑𝐷) ∈ ℂ) |
| 33 | 19 | coef3 23988 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘ℝ)
→ 𝐶:ℕ0⟶ℂ) |
| 34 | 33 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝐶:ℕ0⟶ℂ) |
| 35 | | elfznn0 12433 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝐷) → 𝑘 ∈ ℕ0) |
| 36 | 35 | adantl 482 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑘 ∈ ℕ0) |
| 37 | 34, 36 | ffvelrnd 6360 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝐶‘𝑘) ∈ ℂ) |
| 38 | 28 | adantr 481 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑥 ∈ ℂ) |
| 39 | 38, 36 | expcld 13008 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥↑𝑘) ∈ ℂ) |
| 40 | 37, 39 | mulcld 10060 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → ((𝐶‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
| 41 | | rpne0 11848 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) |
| 42 | 41 | adantl 482 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → 𝑥 ≠ 0) |
| 43 | 30 | nn0zd 11480 |
. . . . . . . 8
⊢ (𝐹 ∈ (Poly‘ℝ)
→ 𝐷 ∈
ℤ) |
| 44 | 43 | adantr 481 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → 𝐷 ∈ ℤ) |
| 45 | 28, 42, 44 | expne0d 13014 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → (𝑥↑𝐷) ≠ 0) |
| 46 | 26, 32, 40, 45 | fsumdivc 14518 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → (Σ𝑘 ∈ (0...𝐷)((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) = Σ𝑘 ∈ (0...𝐷)(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷))) |
| 47 | | fzodisj 12502 |
. . . . . . . 8
⊢
((0..^𝐷) ∩
(𝐷..^(𝐷 + 1))) = ∅ |
| 48 | | fzosn 12538 |
. . . . . . . . 9
⊢ (𝐷 ∈ ℤ → (𝐷..^(𝐷 + 1)) = {𝐷}) |
| 49 | 48 | ineq2d 3814 |
. . . . . . . 8
⊢ (𝐷 ∈ ℤ →
((0..^𝐷) ∩ (𝐷..^(𝐷 + 1))) = ((0..^𝐷) ∩ {𝐷})) |
| 50 | 47, 49 | syl5reqr 2671 |
. . . . . . 7
⊢ (𝐷 ∈ ℤ →
((0..^𝐷) ∩ {𝐷}) = ∅) |
| 51 | 44, 50 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → ((0..^𝐷) ∩ {𝐷}) = ∅) |
| 52 | | fzval3 12536 |
. . . . . . . . 9
⊢ (𝐷 ∈ ℤ →
(0...𝐷) = (0..^(𝐷 + 1))) |
| 53 | 43, 52 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (0...𝐷) =
(0..^(𝐷 +
1))) |
| 54 | | nn0uz 11722 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
| 55 | 30, 54 | syl6eleq 2711 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘ℝ)
→ 𝐷 ∈
(ℤ≥‘0)) |
| 56 | | fzosplitsn 12576 |
. . . . . . . . 9
⊢ (𝐷 ∈
(ℤ≥‘0) → (0..^(𝐷 + 1)) = ((0..^𝐷) ∪ {𝐷})) |
| 57 | 55, 56 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (0..^(𝐷 + 1)) =
((0..^𝐷) ∪ {𝐷})) |
| 58 | 53, 57 | eqtrd 2656 |
. . . . . . 7
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (0...𝐷) =
((0..^𝐷) ∪ {𝐷})) |
| 59 | 58 | adantr 481 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → (0...𝐷) = ((0..^𝐷) ∪ {𝐷})) |
| 60 | 32 | adantr 481 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥↑𝐷) ∈ ℂ) |
| 61 | 42 | adantr 481 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝑥 ≠ 0) |
| 62 | 44 | adantr 481 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → 𝐷 ∈ ℤ) |
| 63 | 38, 61, 62 | expne0d 13014 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (𝑥↑𝐷) ≠ 0) |
| 64 | 40, 60, 63 | divcld 10801 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝐷)) → (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) ∈ ℂ) |
| 65 | 51, 59, 26, 64 | fsumsplit 14471 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ (0...𝐷)(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) = (Σ𝑘 ∈ (0..^𝐷)(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)))) |
| 66 | 46, 65 | eqtrd 2656 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → (Σ𝑘 ∈ (0...𝐷)((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) = (Σ𝑘 ∈ (0..^𝐷)(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)))) |
| 67 | 66 | mpteq2dva 4744 |
. . 3
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑘 ∈ (0...𝐷)((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑘 ∈ (0..^𝐷)(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷))))) |
| 68 | 25, 67 | eqtrd 2656 |
. 2
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (𝐹
∘𝑓 / 𝐺) = (𝑥 ∈ ℝ+ ↦
(Σ𝑘 ∈ (0..^𝐷)(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷))))) |
| 69 | | sumex 14418 |
. . . . 5
⊢
Σ𝑘 ∈
(0..^𝐷)(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) ∈ V |
| 70 | 69 | a1i 11 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ (0..^𝐷)(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) ∈ V) |
| 71 | | sumex 14418 |
. . . . 5
⊢
Σ𝑘 ∈
{𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) ∈ V |
| 72 | 71 | a1i 11 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) ∈ V) |
| 73 | 12 | a1i 11 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘ℝ)
→ ℝ+ ⊆ ℝ) |
| 74 | | fzofi 12773 |
. . . . . . 7
⊢
(0..^𝐷) ∈
Fin |
| 75 | 74 | a1i 11 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (0..^𝐷) ∈
Fin) |
| 76 | | ovexd 6680 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ (𝑥 ∈
ℝ+ ∧ 𝑘
∈ (0..^𝐷))) →
(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) ∈ V) |
| 77 | 33 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐶:ℕ0⟶ℂ) |
| 78 | | elfzonn0 12512 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝐷) → 𝑘 ∈ ℕ0) |
| 79 | 78 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈
ℕ0) |
| 80 | 77, 79 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐶‘𝑘) ∈ ℂ) |
| 81 | 28 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℂ) |
| 82 | 81, 79 | expcld 13008 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑘) ∈ ℂ) |
| 83 | 32 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝐷) ∈ ℂ) |
| 84 | 41 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
| 85 | 44 | adantlr 751 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈
ℤ) |
| 86 | 81, 84, 85 | expne0d 13014 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝐷) ≠ 0) |
| 87 | 80, 82, 83, 86 | divassd 10836 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) = ((𝐶‘𝑘) · ((𝑥↑𝑘) / (𝑥↑𝐷)))) |
| 88 | 87 | mpteq2dva 4744 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷))) = (𝑥 ∈ ℝ+ ↦ ((𝐶‘𝑘) · ((𝑥↑𝑘) / (𝑥↑𝐷))))) |
| 89 | | fvexd 6203 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐶‘𝑘) ∈ V) |
| 90 | | ovexd 6680 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → ((𝑥↑𝑘) / (𝑥↑𝐷)) ∈ V) |
| 91 | 33 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → 𝐶:ℕ0⟶ℂ) |
| 92 | 78 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 ∈ ℕ0) |
| 93 | 91, 92 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → (𝐶‘𝑘) ∈ ℂ) |
| 94 | | rlimconst 14275 |
. . . . . . . . . 10
⊢
((ℝ+ ⊆ ℝ ∧ (𝐶‘𝑘) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝐶‘𝑘)) ⇝𝑟 (𝐶‘𝑘)) |
| 95 | 12, 93, 94 | sylancr 695 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (𝐶‘𝑘)) ⇝𝑟 (𝐶‘𝑘)) |
| 96 | 79 | nn0zd 11480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈
ℤ) |
| 97 | 85, 96 | zsubcld 11487 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐷 − 𝑘) ∈ ℤ) |
| 98 | 81, 84, 97 | cxpexpzd 24457 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑐(𝐷 − 𝑘)) = (𝑥↑(𝐷 − 𝑘))) |
| 99 | 98 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 /
(𝑥↑𝑐(𝐷 − 𝑘))) = (1 / (𝑥↑(𝐷 − 𝑘)))) |
| 100 | 81, 84, 97 | expnegd 13015 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑-(𝐷 − 𝑘)) = (1 / (𝑥↑(𝐷 − 𝑘)))) |
| 101 | 85 | zcnd 11483 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈
ℂ) |
| 102 | 79 | nn0cnd 11353 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑘 ∈
ℂ) |
| 103 | 101, 102 | negsubdi2d 10408 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → -(𝐷 − 𝑘) = (𝑘 − 𝐷)) |
| 104 | 103 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑-(𝐷 − 𝑘)) = (𝑥↑(𝑘 − 𝐷))) |
| 105 | 99, 100, 104 | 3eqtr2d 2662 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 /
(𝑥↑𝑐(𝐷 − 𝑘))) = (𝑥↑(𝑘 − 𝐷))) |
| 106 | 81, 84, 85, 96 | expsubd 13019 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝑥↑(𝑘 − 𝐷)) = ((𝑥↑𝑘) / (𝑥↑𝐷))) |
| 107 | 105, 106 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) ∧ 𝑥 ∈ ℝ+) → (1 /
(𝑥↑𝑐(𝐷 − 𝑘))) = ((𝑥↑𝑘) / (𝑥↑𝐷))) |
| 108 | 107 | mpteq2dva 4744 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (1 /
(𝑥↑𝑐(𝐷 − 𝑘)))) = (𝑥 ∈ ℝ+ ↦ ((𝑥↑𝑘) / (𝑥↑𝐷)))) |
| 109 | 92 | nn0red 11352 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 ∈ ℝ) |
| 110 | 30 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → 𝐷 ∈
ℕ0) |
| 111 | 110 | nn0red 11352 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → 𝐷 ∈ ℝ) |
| 112 | | elfzolt2 12479 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0..^𝐷) → 𝑘 < 𝐷) |
| 113 | 112 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → 𝑘 < 𝐷) |
| 114 | | difrp 11868 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝑘 < 𝐷 ↔ (𝐷 − 𝑘) ∈
ℝ+)) |
| 115 | 114 | biimpa 501 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑘 < 𝐷) → (𝐷 − 𝑘) ∈
ℝ+) |
| 116 | 109, 111,
113, 115 | syl21anc 1325 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → (𝐷 − 𝑘) ∈
ℝ+) |
| 117 | | cxplim 24698 |
. . . . . . . . . . 11
⊢ ((𝐷 − 𝑘) ∈ ℝ+ → (𝑥 ∈ ℝ+
↦ (1 / (𝑥↑𝑐(𝐷 − 𝑘)))) ⇝𝑟
0) |
| 118 | 116, 117 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (1 /
(𝑥↑𝑐(𝐷 − 𝑘)))) ⇝𝑟
0) |
| 119 | 108, 118 | eqbrtrrd 4677 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝑥↑𝑘) / (𝑥↑𝐷))) ⇝𝑟
0) |
| 120 | 89, 90, 95, 119 | rlimmul 14375 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝐶‘𝑘) · ((𝑥↑𝑘) / (𝑥↑𝐷)))) ⇝𝑟 ((𝐶‘𝑘) · 0)) |
| 121 | 93 | mul01d 10235 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → ((𝐶‘𝑘) · 0) = 0) |
| 122 | 120, 121 | breqtrd 4679 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ ((𝐶‘𝑘) · ((𝑥↑𝑘) / (𝑥↑𝐷)))) ⇝𝑟
0) |
| 123 | 88, 122 | eqbrtrd 4675 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑘 ∈ (0..^𝐷)) → (𝑥 ∈ ℝ+ ↦ (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷))) ⇝𝑟
0) |
| 124 | 73, 75, 76, 123 | fsumrlim 14543 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (𝑥 ∈
ℝ+ ↦ Σ𝑘 ∈ (0..^𝐷)(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷))) ⇝𝑟 Σ𝑘 ∈ (0..^𝐷)0) |
| 125 | 75 | olcd 408 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘ℝ)
→ ((0..^𝐷) ⊆
(ℤ≥‘0) ∨ (0..^𝐷) ∈ Fin)) |
| 126 | | sumz 14453 |
. . . . . 6
⊢
(((0..^𝐷) ⊆
(ℤ≥‘0) ∨ (0..^𝐷) ∈ Fin) → Σ𝑘 ∈ (0..^𝐷)0 = 0) |
| 127 | 125, 126 | syl 17 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘ℝ)
→ Σ𝑘 ∈
(0..^𝐷)0 =
0) |
| 128 | 124, 127 | breqtrd 4679 |
. . . 4
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (𝑥 ∈
ℝ+ ↦ Σ𝑘 ∈ (0..^𝐷)(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷))) ⇝𝑟
0) |
| 129 | 33, 30 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (𝐶‘𝐷) ∈
ℂ) |
| 130 | 129 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → (𝐶‘𝐷) ∈ ℂ) |
| 131 | 130, 32 | mulcld 10060 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → ((𝐶‘𝐷) · (𝑥↑𝐷)) ∈ ℂ) |
| 132 | 131, 32, 45 | divcld 10801 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → (((𝐶‘𝐷) · (𝑥↑𝐷)) / (𝑥↑𝐷)) ∈ ℂ) |
| 133 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐷 → (𝐶‘𝑘) = (𝐶‘𝐷)) |
| 134 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐷 → (𝑥↑𝑘) = (𝑥↑𝐷)) |
| 135 | 133, 134 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐷 → ((𝐶‘𝑘) · (𝑥↑𝑘)) = ((𝐶‘𝐷) · (𝑥↑𝐷))) |
| 136 | 135 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑘 = 𝐷 → (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) = (((𝐶‘𝐷) · (𝑥↑𝐷)) / (𝑥↑𝐷))) |
| 137 | 136 | sumsn 14475 |
. . . . . . . 8
⊢ ((𝐷 ∈ ℕ0
∧ (((𝐶‘𝐷) · (𝑥↑𝐷)) / (𝑥↑𝐷)) ∈ ℂ) → Σ𝑘 ∈ {𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) = (((𝐶‘𝐷) · (𝑥↑𝐷)) / (𝑥↑𝐷))) |
| 138 | 31, 132, 137 | syl2anc 693 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) = (((𝐶‘𝐷) · (𝑥↑𝐷)) / (𝑥↑𝐷))) |
| 139 | 130, 32, 45 | divcan4d 10807 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → (((𝐶‘𝐷) · (𝑥↑𝐷)) / (𝑥↑𝐷)) = (𝐶‘𝐷)) |
| 140 | 138, 139 | eqtrd 2656 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘ℝ)
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ {𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) = (𝐶‘𝐷)) |
| 141 | 140 | mpteq2dva 4744 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (𝑥 ∈
ℝ+ ↦ Σ𝑘 ∈ {𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷))) = (𝑥 ∈ ℝ+ ↦ (𝐶‘𝐷))) |
| 142 | | rlimconst 14275 |
. . . . . 6
⊢
((ℝ+ ⊆ ℝ ∧ (𝐶‘𝐷) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝐶‘𝐷)) ⇝𝑟 (𝐶‘𝐷)) |
| 143 | 12, 129, 142 | sylancr 695 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (𝑥 ∈
ℝ+ ↦ (𝐶‘𝐷)) ⇝𝑟 (𝐶‘𝐷)) |
| 144 | 141, 143 | eqbrtrd 4675 |
. . . 4
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (𝑥 ∈
ℝ+ ↦ Σ𝑘 ∈ {𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷))) ⇝𝑟 (𝐶‘𝐷)) |
| 145 | 70, 72, 128, 144 | rlimadd 14373 |
. . 3
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)))) ⇝𝑟 (0 + (𝐶‘𝐷))) |
| 146 | 129 | addid2d 10237 |
. . . 4
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (0 + (𝐶‘𝐷)) = (𝐶‘𝐷)) |
| 147 | | signsply0.b |
. . . 4
⊢ 𝐵 = (𝐶‘𝐷) |
| 148 | 146, 147 | syl6eqr 2674 |
. . 3
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (0 + (𝐶‘𝐷)) = 𝐵) |
| 149 | 145, 148 | breqtrd 4679 |
. 2
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑘 ∈ (0..^𝐷)(((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)) + Σ𝑘 ∈ {𝐷} (((𝐶‘𝑘) · (𝑥↑𝑘)) / (𝑥↑𝐷)))) ⇝𝑟 𝐵) |
| 150 | 68, 149 | eqbrtrd 4675 |
1
⊢ (𝐹 ∈ (Poly‘ℝ)
→ (𝐹
∘𝑓 / 𝐺) ⇝𝑟 𝐵) |