MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzmhm Structured version   Visualization version   GIF version

Theorem gsumzmhm 18337
Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumzmhm.b 𝐵 = (Base‘𝐺)
gsumzmhm.z 𝑍 = (Cntz‘𝐺)
gsumzmhm.g (𝜑𝐺 ∈ Mnd)
gsumzmhm.h (𝜑𝐻 ∈ Mnd)
gsumzmhm.a (𝜑𝐴𝑉)
gsumzmhm.k (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))
gsumzmhm.f (𝜑𝐹:𝐴𝐵)
gsumzmhm.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzmhm.0 0 = (0g𝐺)
gsumzmhm.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzmhm (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))

Proof of Theorem gsumzmhm
Dummy variables 𝑘 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzmhm.h . . . . . . 7 (𝜑𝐻 ∈ Mnd)
2 gsumzmhm.a . . . . . . 7 (𝜑𝐴𝑉)
3 eqid 2622 . . . . . . . 8 (0g𝐻) = (0g𝐻)
43gsumz 17374 . . . . . . 7 ((𝐻 ∈ Mnd ∧ 𝐴𝑉) → (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))) = (0g𝐻))
51, 2, 4syl2anc 693 . . . . . 6 (𝜑 → (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))) = (0g𝐻))
65adantr 481 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))) = (0g𝐻))
7 gsumzmhm.k . . . . . . 7 (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))
8 gsumzmhm.0 . . . . . . . 8 0 = (0g𝐺)
98, 3mhm0 17343 . . . . . . 7 (𝐾 ∈ (𝐺 MndHom 𝐻) → (𝐾0 ) = (0g𝐻))
107, 9syl 17 . . . . . 6 (𝜑 → (𝐾0 ) = (0g𝐻))
1110adantr 481 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐾0 ) = (0g𝐻))
126, 11eqtr4d 2659 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))) = (𝐾0 ))
13 gsumzmhm.g . . . . . . . . 9 (𝜑𝐺 ∈ Mnd)
14 gsumzmhm.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
1514, 8mndidcl 17308 . . . . . . . . 9 (𝐺 ∈ Mnd → 0𝐵)
1613, 15syl 17 . . . . . . . 8 (𝜑0𝐵)
1716ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) ∧ 𝑘𝐴) → 0𝐵)
18 gsumzmhm.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
19 fvex 6201 . . . . . . . . . 10 (0g𝐺) ∈ V
208, 19eqeltri 2697 . . . . . . . . 9 0 ∈ V
2120a1i 11 . . . . . . . 8 (𝜑0 ∈ V)
22 fex 6490 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
2318, 2, 22syl2anc 693 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
24 suppimacnv 7306 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
2523, 21, 24syl2anc 693 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
26 ssid 3624 . . . . . . . . 9 (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 “ (V ∖ { 0 }))
2725, 26syl6eqss 3655 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
2818, 2, 21, 27gsumcllem 18309 . . . . . . 7 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → 𝐹 = (𝑘𝐴0 ))
29 eqid 2622 . . . . . . . . . . 11 (Base‘𝐻) = (Base‘𝐻)
3014, 29mhmf 17340 . . . . . . . . . 10 (𝐾 ∈ (𝐺 MndHom 𝐻) → 𝐾:𝐵⟶(Base‘𝐻))
317, 30syl 17 . . . . . . . . 9 (𝜑𝐾:𝐵⟶(Base‘𝐻))
3231feqmptd 6249 . . . . . . . 8 (𝜑𝐾 = (𝑥𝐵 ↦ (𝐾𝑥)))
3332adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → 𝐾 = (𝑥𝐵 ↦ (𝐾𝑥)))
34 fveq2 6191 . . . . . . 7 (𝑥 = 0 → (𝐾𝑥) = (𝐾0 ))
3517, 28, 33, 34fmptco 6396 . . . . . 6 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐾𝐹) = (𝑘𝐴 ↦ (𝐾0 )))
3610mpteq2dv 4745 . . . . . . 7 (𝜑 → (𝑘𝐴 ↦ (𝐾0 )) = (𝑘𝐴 ↦ (0g𝐻)))
3736adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝑘𝐴 ↦ (𝐾0 )) = (𝑘𝐴 ↦ (0g𝐻)))
3835, 37eqtrd 2656 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐾𝐹) = (𝑘𝐴 ↦ (0g𝐻)))
3938oveq2d 6666 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐻 Σg (𝐾𝐹)) = (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))))
4028oveq2d 6666 . . . . . 6 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
418gsumz 17374 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
4213, 2, 41syl2anc 693 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
4342adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
4440, 43eqtrd 2656 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐺 Σg 𝐹) = 0 )
4544fveq2d 6195 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾0 ))
4612, 39, 453eqtr4d 2666 . . 3 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
4746ex 450 . 2 (𝜑 → ((𝐹 “ (V ∖ { 0 })) = ∅ → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹))))
4813adantr 481 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐺 ∈ Mnd)
49 eqid 2622 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
5014, 49mndcl 17301 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
51503expb 1266 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
5248, 51sylan 488 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
5318adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴𝐵)
54 f1of1 6136 . . . . . . . . . . . 12 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })))
5554ad2antll 765 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })))
56 cnvimass 5485 . . . . . . . . . . . 12 (𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹
57 fdm 6051 . . . . . . . . . . . . 13 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5853, 57syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → dom 𝐹 = 𝐴)
5956, 58syl5sseq 3653 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
60 f1ss 6106 . . . . . . . . . . 11 ((𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })) ∧ (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
6155, 59, 60syl2anc 693 . . . . . . . . . 10 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
62 f1f 6101 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴)
6361, 62syl 17 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴)
64 fco 6058 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴) → (𝐹𝑓):(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐵)
6553, 63, 64syl2anc 693 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹𝑓):(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐵)
6665ffvelrnda 6359 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(#‘(𝐹 “ (V ∖ { 0 }))))) → ((𝐹𝑓)‘𝑥) ∈ 𝐵)
67 simprl 794 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ)
68 nnuz 11723 . . . . . . . 8 ℕ = (ℤ‘1)
6967, 68syl6eleq 2711 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (#‘(𝐹 “ (V ∖ { 0 }))) ∈ (ℤ‘1))
707adantr 481 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐾 ∈ (𝐺 MndHom 𝐻))
71 eqid 2622 . . . . . . . . . 10 (+g𝐻) = (+g𝐻)
7214, 49, 71mhmlin 17342 . . . . . . . . 9 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥𝐵𝑦𝐵) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
73723expb 1266 . . . . . . . 8 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ (𝑥𝐵𝑦𝐵)) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
7470, 73sylan 488 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ (𝑥𝐵𝑦𝐵)) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
75 coass 5654 . . . . . . . . 9 ((𝐾𝐹) ∘ 𝑓) = (𝐾 ∘ (𝐹𝑓))
7675fveq1i 6192 . . . . . . . 8 (((𝐾𝐹) ∘ 𝑓)‘𝑥) = ((𝐾 ∘ (𝐹𝑓))‘𝑥)
77 fvco3 6275 . . . . . . . . 9 (((𝐹𝑓):(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐵𝑥 ∈ (1...(#‘(𝐹 “ (V ∖ { 0 }))))) → ((𝐾 ∘ (𝐹𝑓))‘𝑥) = (𝐾‘((𝐹𝑓)‘𝑥)))
7865, 77sylan 488 . . . . . . . 8 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(#‘(𝐹 “ (V ∖ { 0 }))))) → ((𝐾 ∘ (𝐹𝑓))‘𝑥) = (𝐾‘((𝐹𝑓)‘𝑥)))
7976, 78syl5req 2669 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(#‘(𝐹 “ (V ∖ { 0 }))))) → (𝐾‘((𝐹𝑓)‘𝑥)) = (((𝐾𝐹) ∘ 𝑓)‘𝑥))
8052, 66, 69, 74, 79seqhomo 12848 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐾‘(seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))) = (seq1((+g𝐻), ((𝐾𝐹) ∘ 𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))
81 gsumzmhm.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
822adantr 481 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐴𝑉)
83 gsumzmhm.c . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8483adantr 481 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8527adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
86 f1ofo 6144 . . . . . . . . . . 11 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–onto→(𝐹 “ (V ∖ { 0 })))
87 forn 6118 . . . . . . . . . . 11 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–onto→(𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
8886, 87syl 17 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
8988ad2antll 765 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
9085, 89sseqtr4d 3642 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
91 eqid 2622 . . . . . . . 8 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
9214, 8, 49, 81, 48, 82, 53, 84, 67, 61, 90, 91gsumval3 18308 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))
9392fveq2d 6195 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾‘(seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))))
94 eqid 2622 . . . . . . 7 (Cntz‘𝐻) = (Cntz‘𝐻)
951adantr 481 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐻 ∈ Mnd)
9631adantr 481 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐾:𝐵⟶(Base‘𝐻))
97 fco 6058 . . . . . . . 8 ((𝐾:𝐵⟶(Base‘𝐻) ∧ 𝐹:𝐴𝐵) → (𝐾𝐹):𝐴⟶(Base‘𝐻))
9896, 53, 97syl2anc 693 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐾𝐹):𝐴⟶(Base‘𝐻))
9981, 94cntzmhm2 17772 . . . . . . . . 9 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐾 “ ran 𝐹) ⊆ ((Cntz‘𝐻)‘(𝐾 “ ran 𝐹)))
10070, 84, 99syl2anc 693 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐾 “ ran 𝐹) ⊆ ((Cntz‘𝐻)‘(𝐾 “ ran 𝐹)))
101 rnco2 5642 . . . . . . . 8 ran (𝐾𝐹) = (𝐾 “ ran 𝐹)
102101fveq2i 6194 . . . . . . . 8 ((Cntz‘𝐻)‘ran (𝐾𝐹)) = ((Cntz‘𝐻)‘(𝐾 “ ran 𝐹))
103100, 101, 1023sstr4g 3646 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran (𝐾𝐹) ⊆ ((Cntz‘𝐻)‘ran (𝐾𝐹)))
104 eldifi 3732 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 }))) → 𝑥𝐴)
105 fvco3 6275 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
10653, 104, 105syl2an 494 . . . . . . . . . 10 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
10720a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 0 ∈ V)
10853, 85, 82, 107suppssr 7326 . . . . . . . . . . 11 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → (𝐹𝑥) = 0 )
109108fveq2d 6195 . . . . . . . . . 10 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → (𝐾‘(𝐹𝑥)) = (𝐾0 ))
11010ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → (𝐾0 ) = (0g𝐻))
111106, 109, 1103eqtrd 2660 . . . . . . . . 9 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → ((𝐾𝐹)‘𝑥) = (0g𝐻))
11298, 111suppss 7325 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐾𝐹) supp (0g𝐻)) ⊆ (𝐹 “ (V ∖ { 0 })))
113112, 89sseqtr4d 3642 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐾𝐹) supp (0g𝐻)) ⊆ ran 𝑓)
114 eqid 2622 . . . . . . 7 (((𝐾𝐹) ∘ 𝑓) supp (0g𝐻)) = (((𝐾𝐹) ∘ 𝑓) supp (0g𝐻))
11529, 3, 71, 94, 95, 82, 98, 103, 67, 61, 113, 114gsumval3 18308 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐻 Σg (𝐾𝐹)) = (seq1((+g𝐻), ((𝐾𝐹) ∘ 𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))
11680, 93, 1153eqtr4rd 2667 . . . . 5 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
117116expr 643 . . . 4 ((𝜑 ∧ (#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ) → (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹))))
118117exlimdv 1861 . . 3 ((𝜑 ∧ (#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹))))
119118expimpd 629 . 2 (𝜑 → (((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 }))) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹))))
120 gsumzmhm.w . . . . 5 (𝜑𝐹 finSupp 0 )
121120fsuppimpd 8282 . . . 4 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
12225, 121eqeltrrd 2702 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) ∈ Fin)
123 fz1f1o 14441 . . 3 ((𝐹 “ (V ∖ { 0 })) ∈ Fin → ((𝐹 “ (V ∖ { 0 })) = ∅ ∨ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))))
124122, 123syl 17 . 2 (𝜑 → ((𝐹 “ (V ∖ { 0 })) = ∅ ∨ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))))
12547, 119, 124mpjaod 396 1 (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cdif 3571  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650   supp csupp 7295  Fincfn 7955   finSupp cfsupp 8275  1c1 9937  cn 11020  cuz 11687  ...cfz 12326  seqcseq 12801  #chash 13117  Basecbs 15857  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294   MndHom cmhm 17333  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-cntz 17750
This theorem is referenced by:  gsummhm  18338  gsumzinv  18345
  Copyright terms: Public domain W3C validator