MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzrngunitlem Structured version   Visualization version   GIF version

Theorem gzrngunitlem 19811
Description: Lemma for gzrngunit 19812. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
gzrng.1 𝑍 = (ℂflds ℤ[i])
Assertion
Ref Expression
gzrngunitlem (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴))

Proof of Theorem gzrngunitlem
StepHypRef Expression
1 sq1 12958 . . 3 (1↑2) = 1
2 ax-1ne0 10005 . . . . . 6 1 ≠ 0
3 gzsubrg 19800 . . . . . . 7 ℤ[i] ∈ (SubRing‘ℂfld)
4 gzrng.1 . . . . . . . 8 𝑍 = (ℂflds ℤ[i])
54subrgring 18783 . . . . . . 7 (ℤ[i] ∈ (SubRing‘ℂfld) → 𝑍 ∈ Ring)
6 eqid 2622 . . . . . . . 8 (Unit‘𝑍) = (Unit‘𝑍)
7 subrgsubg 18786 . . . . . . . . 9 (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] ∈ (SubGrp‘ℂfld))
8 cnfld0 19770 . . . . . . . . . 10 0 = (0g‘ℂfld)
94, 8subg0 17600 . . . . . . . . 9 (ℤ[i] ∈ (SubGrp‘ℂfld) → 0 = (0g𝑍))
103, 7, 9mp2b 10 . . . . . . . 8 0 = (0g𝑍)
11 cnfld1 19771 . . . . . . . . . 10 1 = (1r‘ℂfld)
124, 11subrg1 18790 . . . . . . . . 9 (ℤ[i] ∈ (SubRing‘ℂfld) → 1 = (1r𝑍))
133, 12ax-mp 5 . . . . . . . 8 1 = (1r𝑍)
146, 10, 130unit 18680 . . . . . . 7 (𝑍 ∈ Ring → (0 ∈ (Unit‘𝑍) ↔ 1 = 0))
153, 5, 14mp2b 10 . . . . . 6 (0 ∈ (Unit‘𝑍) ↔ 1 = 0)
162, 15nemtbir 2889 . . . . 5 ¬ 0 ∈ (Unit‘𝑍)
174subrgbas 18789 . . . . . . . . . . 11 (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] = (Base‘𝑍))
183, 17ax-mp 5 . . . . . . . . . 10 ℤ[i] = (Base‘𝑍)
1918, 6unitcl 18659 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℤ[i])
20 gzabssqcl 15645 . . . . . . . . 9 (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) ∈ ℕ0)
2119, 20syl 17 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴)↑2) ∈ ℕ0)
22 elnn0 11294 . . . . . . . 8 (((abs‘𝐴)↑2) ∈ ℕ0 ↔ (((abs‘𝐴)↑2) ∈ ℕ ∨ ((abs‘𝐴)↑2) = 0))
2321, 22sylib 208 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) ∈ ℕ ∨ ((abs‘𝐴)↑2) = 0))
2423ord 392 . . . . . 6 (𝐴 ∈ (Unit‘𝑍) → (¬ ((abs‘𝐴)↑2) ∈ ℕ → ((abs‘𝐴)↑2) = 0))
25 gzcn 15636 . . . . . . . . . . 11 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
2619, 25syl 17 . . . . . . . . . 10 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℂ)
2726abscld 14175 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℝ)
2827recnd 10068 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℂ)
29 sqeq0 12927 . . . . . . . 8 ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) = 0 ↔ (abs‘𝐴) = 0))
3028, 29syl 17 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) = 0 ↔ (abs‘𝐴) = 0))
3126abs00ad 14030 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
32 eleq1 2689 . . . . . . . . 9 (𝐴 = 0 → (𝐴 ∈ (Unit‘𝑍) ↔ 0 ∈ (Unit‘𝑍)))
3332biimpcd 239 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → (𝐴 = 0 → 0 ∈ (Unit‘𝑍)))
3431, 33sylbid 230 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 → 0 ∈ (Unit‘𝑍)))
3530, 34sylbid 230 . . . . . 6 (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) = 0 → 0 ∈ (Unit‘𝑍)))
3624, 35syld 47 . . . . 5 (𝐴 ∈ (Unit‘𝑍) → (¬ ((abs‘𝐴)↑2) ∈ ℕ → 0 ∈ (Unit‘𝑍)))
3716, 36mt3i 141 . . . 4 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴)↑2) ∈ ℕ)
3837nnge1d 11063 . . 3 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ ((abs‘𝐴)↑2))
391, 38syl5eqbr 4688 . 2 (𝐴 ∈ (Unit‘𝑍) → (1↑2) ≤ ((abs‘𝐴)↑2))
4026absge0d 14183 . . 3 (𝐴 ∈ (Unit‘𝑍) → 0 ≤ (abs‘𝐴))
41 1re 10039 . . . 4 1 ∈ ℝ
42 0le1 10551 . . . 4 0 ≤ 1
43 le2sq 12938 . . . 4 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2)))
4441, 42, 43mpanl12 718 . . 3 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2)))
4527, 40, 44syl2anc 693 . 2 (𝐴 ∈ (Unit‘𝑍) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2)))
4639, 45mpbird 247 1 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937  cle 10075  cn 11020  2c2 11070  0cn0 11292  cexp 12860  abscabs 13974  ℤ[i]cgz 15633  Basecbs 15857  s cress 15858  0gc0g 16100  SubGrpcsubg 17588  1rcur 18501  Ringcrg 18547  Unitcui 18639  SubRingcsubrg 18776  fldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-gz 15634  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-subrg 18778  df-cnfld 19747
This theorem is referenced by:  gzrngunit  19812
  Copyright terms: Public domain W3C validator