MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdvds Structured version   Visualization version   GIF version

Theorem hashdvds 15480
Description: The number of numbers in a given residue class in a finite set of integers. (Contributed by Mario Carneiro, 12-Mar-2014.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
hashdvds.1 (𝜑𝑁 ∈ ℕ)
hashdvds.2 (𝜑𝐴 ∈ ℤ)
hashdvds.3 (𝜑𝐵 ∈ (ℤ‘(𝐴 − 1)))
hashdvds.4 (𝜑𝐶 ∈ ℤ)
Assertion
Ref Expression
hashdvds (𝜑 → (#‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑁
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem hashdvds
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 11408 . . . . . 6 (𝜑 → 1 ∈ ℤ)
2 hashdvds.3 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (ℤ‘(𝐴 − 1)))
3 eluzelz 11697 . . . . . . . . . . . 12 (𝐵 ∈ (ℤ‘(𝐴 − 1)) → 𝐵 ∈ ℤ)
42, 3syl 17 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
5 hashdvds.4 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
64, 5zsubcld 11487 . . . . . . . . . 10 (𝜑 → (𝐵𝐶) ∈ ℤ)
76zred 11482 . . . . . . . . 9 (𝜑 → (𝐵𝐶) ∈ ℝ)
8 hashdvds.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
97, 8nndivred 11069 . . . . . . . 8 (𝜑 → ((𝐵𝐶) / 𝑁) ∈ ℝ)
109flcld 12599 . . . . . . 7 (𝜑 → (⌊‘((𝐵𝐶) / 𝑁)) ∈ ℤ)
11 hashdvds.2 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
12 peano2zm 11420 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴 − 1) ∈ ℤ)
1413, 5zsubcld 11487 . . . . . . . . . 10 (𝜑 → ((𝐴 − 1) − 𝐶) ∈ ℤ)
1514zred 11482 . . . . . . . . 9 (𝜑 → ((𝐴 − 1) − 𝐶) ∈ ℝ)
1615, 8nndivred 11069 . . . . . . . 8 (𝜑 → (((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℝ)
1716flcld 12599 . . . . . . 7 (𝜑 → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ)
1810, 17zsubcld 11487 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℤ)
19 fzen 12358 . . . . . 6 ((1 ∈ ℤ ∧ ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℤ ∧ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ) → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ ((1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))))
201, 18, 17, 19syl3anc 1326 . . . . 5 (𝜑 → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ ((1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))))
21 ax-1cn 9994 . . . . . . 7 1 ∈ ℂ
2217zcnd 11483 . . . . . . 7 (𝜑 → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℂ)
23 addcom 10222 . . . . . . 7 ((1 ∈ ℂ ∧ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℂ) → (1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) = ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1))
2421, 22, 23sylancr 695 . . . . . 6 (𝜑 → (1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) = ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1))
2510zcnd 11483 . . . . . . 7 (𝜑 → (⌊‘((𝐵𝐶) / 𝑁)) ∈ ℂ)
2625, 22npcand 10396 . . . . . 6 (𝜑 → (((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) = (⌊‘((𝐵𝐶) / 𝑁)))
2724, 26oveq12d 6668 . . . . 5 (𝜑 → ((1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) = (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))))
2820, 27breqtrd 4679 . . . 4 (𝜑 → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))))
29 ovexd 6680 . . . . 5 (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∈ V)
30 fzfi 12771 . . . . . 6 (𝐴...𝐵) ∈ Fin
31 rabexg 4812 . . . . . 6 ((𝐴...𝐵) ∈ Fin → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ V)
3230, 31mp1i 13 . . . . 5 (𝜑 → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ V)
33 elfzle1 12344 . . . . . . . . . . . . . 14 (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧)
3433adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧)
35 elfzelz 12342 . . . . . . . . . . . . . 14 (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) → 𝑧 ∈ ℤ)
36 zltp1le 11427 . . . . . . . . . . . . . 14 (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧 ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧))
3717, 35, 36syl2an 494 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧 ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧))
3834, 37mpbird 247 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧)
39 fllt 12607 . . . . . . . . . . . . 13 (((((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℝ ∧ 𝑧 ∈ ℤ) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧))
4016, 35, 39syl2an 494 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧))
4138, 40mpbird 247 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧)
4215adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝐴 − 1) − 𝐶) ∈ ℝ)
4335adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ∈ ℤ)
4443zred 11482 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ∈ ℝ)
458nnred 11035 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
468nngt0d 11064 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
4745, 46jca 554 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
4847adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
49 ltdivmul2 10900 . . . . . . . . . . . 12 ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁)))
5042, 44, 48, 49syl3anc 1326 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁)))
5141, 50mpbid 222 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁))
5213zred 11482 . . . . . . . . . . . 12 (𝜑 → (𝐴 − 1) ∈ ℝ)
5352adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝐴 − 1) ∈ ℝ)
545zred 11482 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
5554adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐶 ∈ ℝ)
568nnzd 11481 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
5756adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑁 ∈ ℤ)
5843, 57zmulcld 11488 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℤ)
5958zred 11482 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℝ)
6053, 55, 59ltsubaddd 10623 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶)))
6151, 60mpbid 222 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶))
6211adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐴 ∈ ℤ)
635adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐶 ∈ ℤ)
6458, 63zaddcld 11486 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ ℤ)
65 zlem1lt 11429 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝑧 · 𝑁) + 𝐶) ∈ ℤ) → (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶)))
6662, 64, 65syl2anc 693 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶)))
6761, 66mpbird 247 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐴 ≤ ((𝑧 · 𝑁) + 𝐶))
68 elfzle2 12345 . . . . . . . . . . . 12 (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) → 𝑧 ≤ (⌊‘((𝐵𝐶) / 𝑁)))
6968adantl 482 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ≤ (⌊‘((𝐵𝐶) / 𝑁)))
70 flge 12606 . . . . . . . . . . . 12 ((((𝐵𝐶) / 𝑁) ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ ((𝐵𝐶) / 𝑁) ↔ 𝑧 ≤ (⌊‘((𝐵𝐶) / 𝑁))))
719, 35, 70syl2an 494 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 ≤ ((𝐵𝐶) / 𝑁) ↔ 𝑧 ≤ (⌊‘((𝐵𝐶) / 𝑁))))
7269, 71mpbird 247 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ≤ ((𝐵𝐶) / 𝑁))
737adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝐵𝐶) ∈ ℝ)
74 lemuldiv 10903 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ (𝐵𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑧 · 𝑁) ≤ (𝐵𝐶) ↔ 𝑧 ≤ ((𝐵𝐶) / 𝑁)))
7544, 73, 48, 74syl3anc 1326 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) ≤ (𝐵𝐶) ↔ 𝑧 ≤ ((𝐵𝐶) / 𝑁)))
7672, 75mpbird 247 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 · 𝑁) ≤ (𝐵𝐶))
774zred 11482 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
7877adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐵 ∈ ℝ)
79 leaddsub 10504 . . . . . . . . . 10 (((𝑧 · 𝑁) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝑧 · 𝑁) + 𝐶) ≤ 𝐵 ↔ (𝑧 · 𝑁) ≤ (𝐵𝐶)))
8059, 55, 78, 79syl3anc 1326 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) ≤ 𝐵 ↔ (𝑧 · 𝑁) ≤ (𝐵𝐶)))
8176, 80mpbird 247 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵)
824adantr 481 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐵 ∈ ℤ)
83 elfz 12332 . . . . . . . . 9 ((((𝑧 · 𝑁) + 𝐶) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵) ↔ (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ∧ ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵)))
8464, 62, 82, 83syl3anc 1326 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵) ↔ (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ∧ ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵)))
8567, 81, 84mpbir2and 957 . . . . . . 7 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵))
86 dvdsmul2 15004 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑧 · 𝑁))
8743, 57, 86syl2anc 693 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑁 ∥ (𝑧 · 𝑁))
8858zcnd 11483 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℂ)
895zcnd 11483 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
9089adantr 481 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐶 ∈ ℂ)
9188, 90pncand 10393 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) − 𝐶) = (𝑧 · 𝑁))
9287, 91breqtrrd 4681 . . . . . . 7 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶))
93 oveq1 6657 . . . . . . . . 9 (𝑥 = ((𝑧 · 𝑁) + 𝐶) → (𝑥𝐶) = (((𝑧 · 𝑁) + 𝐶) − 𝐶))
9493breq2d 4665 . . . . . . . 8 (𝑥 = ((𝑧 · 𝑁) + 𝐶) → (𝑁 ∥ (𝑥𝐶) ↔ 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶)))
9594elrab 3363 . . . . . . 7 (((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ↔ (((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶)))
9685, 92, 95sylanbrc 698 . . . . . 6 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
9796ex 450 . . . . 5 (𝜑 → (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) → ((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}))
98 oveq1 6657 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐶) = (𝑦𝐶))
9998breq2d 4665 . . . . . . 7 (𝑥 = 𝑦 → (𝑁 ∥ (𝑥𝐶) ↔ 𝑁 ∥ (𝑦𝐶)))
10099elrab 3363 . . . . . 6 (𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ↔ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))
10152adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝐴 − 1) ∈ ℝ)
102 elfzelz 12342 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ)
103102ad2antrl 764 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑦 ∈ ℤ)
104103zred 11482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑦 ∈ ℝ)
10554adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐶 ∈ ℝ)
106 elfzle1 12344 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴...𝐵) → 𝐴𝑦)
107106ad2antrl 764 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐴𝑦)
10811adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐴 ∈ ℤ)
109 zlem1lt 11429 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐴𝑦 ↔ (𝐴 − 1) < 𝑦))
110108, 103, 109syl2anc 693 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝐴𝑦 ↔ (𝐴 − 1) < 𝑦))
111107, 110mpbid 222 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝐴 − 1) < 𝑦)
112101, 104, 105, 111ltsub1dd 10639 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝐴 − 1) − 𝐶) < (𝑦𝐶))
11315adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝐴 − 1) − 𝐶) ∈ ℝ)
1145adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐶 ∈ ℤ)
115103, 114zsubcld 11487 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑦𝐶) ∈ ℤ)
116115zred 11482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑦𝐶) ∈ ℝ)
11747adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
118 ltdiv1 10887 . . . . . . . . . . . 12 ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ (𝑦𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝐴 − 1) − 𝐶) < (𝑦𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁)))
119113, 116, 117, 118syl3anc 1326 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (((𝐴 − 1) − 𝐶) < (𝑦𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁)))
120112, 119mpbid 222 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁))
12116adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℝ)
122 simprr 796 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑁 ∥ (𝑦𝐶))
12356adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑁 ∈ ℤ)
1248nnne0d 11065 . . . . . . . . . . . . . 14 (𝜑𝑁 ≠ 0)
125124adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑁 ≠ 0)
126 dvdsval2 14986 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ (𝑦𝐶) ∈ ℤ) → (𝑁 ∥ (𝑦𝐶) ↔ ((𝑦𝐶) / 𝑁) ∈ ℤ))
127123, 125, 115, 126syl3anc 1326 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑁 ∥ (𝑦𝐶) ↔ ((𝑦𝐶) / 𝑁) ∈ ℤ))
128122, 127mpbid 222 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) / 𝑁) ∈ ℤ)
129 fllt 12607 . . . . . . . . . . 11 (((((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℝ ∧ ((𝑦𝐶) / 𝑁) ∈ ℤ) → ((((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁) ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁)))
130121, 128, 129syl2anc 693 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁) ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁)))
131120, 130mpbid 222 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁))
13217adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ)
133 zltp1le 11427 . . . . . . . . . 10 (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ ∧ ((𝑦𝐶) / 𝑁) ∈ ℤ) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁) ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁)))
134132, 128, 133syl2anc 693 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁) ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁)))
135131, 134mpbid 222 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁))
13677adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐵 ∈ ℝ)
137 elfzle2 12345 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴...𝐵) → 𝑦𝐵)
138137ad2antrl 764 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑦𝐵)
139104, 136, 105, 138lesub1dd 10643 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑦𝐶) ≤ (𝐵𝐶))
1407adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝐵𝐶) ∈ ℝ)
141 lediv1 10888 . . . . . . . . . . 11 (((𝑦𝐶) ∈ ℝ ∧ (𝐵𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑦𝐶) ≤ (𝐵𝐶) ↔ ((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)))
142116, 140, 117, 141syl3anc 1326 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) ≤ (𝐵𝐶) ↔ ((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)))
143139, 142mpbid 222 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁))
1449adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝐵𝐶) / 𝑁) ∈ ℝ)
145 flge 12606 . . . . . . . . . 10 ((((𝐵𝐶) / 𝑁) ∈ ℝ ∧ ((𝑦𝐶) / 𝑁) ∈ ℤ) → (((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁) ↔ ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁))))
146144, 128, 145syl2anc 693 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁) ↔ ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁))))
147143, 146mpbid 222 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁)))
14817peano2zd 11485 . . . . . . . . . 10 (𝜑 → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ)
149148adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ)
15010adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (⌊‘((𝐵𝐶) / 𝑁)) ∈ ℤ)
151 elfz 12332 . . . . . . . . 9 ((((𝑦𝐶) / 𝑁) ∈ ℤ ∧ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ ∧ (⌊‘((𝐵𝐶) / 𝑁)) ∈ ℤ) → (((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ↔ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁) ∧ ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁)))))
152128, 149, 150, 151syl3anc 1326 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ↔ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁) ∧ ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁)))))
153135, 147, 152mpbir2and 957 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))))
154153ex 450 . . . . . 6 (𝜑 → ((𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)) → ((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))))
155100, 154syl5bi 232 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} → ((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))))
156100anbi2i 730 . . . . . . 7 ((𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) ↔ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))))
157115zcnd 11483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑦𝐶) ∈ ℂ)
158157adantrl 752 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (𝑦𝐶) ∈ ℂ)
15943zcnd 11483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ∈ ℂ)
160159adantrr 753 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝑧 ∈ ℂ)
1618nncnd 11036 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
162161adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝑁 ∈ ℂ)
163124adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝑁 ≠ 0)
164158, 160, 162, 163divmul3d 10835 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (((𝑦𝐶) / 𝑁) = 𝑧 ↔ (𝑦𝐶) = (𝑧 · 𝑁)))
165103zcnd 11483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑦 ∈ ℂ)
166165adantrl 752 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝑦 ∈ ℂ)
16789adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝐶 ∈ ℂ)
16888adantrr 753 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (𝑧 · 𝑁) ∈ ℂ)
169166, 167, 168subadd2d 10411 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → ((𝑦𝐶) = (𝑧 · 𝑁) ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦))
170164, 169bitrd 268 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (((𝑦𝐶) / 𝑁) = 𝑧 ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦))
171 eqcom 2629 . . . . . . . 8 (𝑧 = ((𝑦𝐶) / 𝑁) ↔ ((𝑦𝐶) / 𝑁) = 𝑧)
172 eqcom 2629 . . . . . . . 8 (𝑦 = ((𝑧 · 𝑁) + 𝐶) ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦)
173170, 171, 1723bitr4g 303 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (𝑧 = ((𝑦𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶)))
174156, 173sylan2b 492 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})) → (𝑧 = ((𝑦𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶)))
175174ex 450 . . . . 5 (𝜑 → ((𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) → (𝑧 = ((𝑦𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶))))
17629, 32, 97, 155, 175en3d 7992 . . . 4 (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
177 entr 8008 . . . 4 (((1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
17828, 176, 177syl2anc 693 . . 3 (𝜑 → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
179 fzfi 12771 . . . 4 (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ∈ Fin
180 ssrab2 3687 . . . . 5 {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ⊆ (𝐴...𝐵)
181 ssfi 8180 . . . . 5 (((𝐴...𝐵) ∈ Fin ∧ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ⊆ (𝐴...𝐵)) → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ Fin)
18230, 180, 181mp2an 708 . . . 4 {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ Fin
183 hashen 13135 . . . 4 (((1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ∈ Fin ∧ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ Fin) → ((#‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (#‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) ↔ (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}))
184179, 182, 183mp2an 708 . . 3 ((#‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (#‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) ↔ (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
185178, 184sylibr 224 . 2 (𝜑 → (#‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (#‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}))
186 eluzle 11700 . . . . . . 7 (𝐵 ∈ (ℤ‘(𝐴 − 1)) → (𝐴 − 1) ≤ 𝐵)
1872, 186syl 17 . . . . . 6 (𝜑 → (𝐴 − 1) ≤ 𝐵)
188 zre 11381 . . . . . . . 8 ((𝐴 − 1) ∈ ℤ → (𝐴 − 1) ∈ ℝ)
189 zre 11381 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
190 zre 11381 . . . . . . . 8 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
191 lesub1 10522 . . . . . . . 8 (((𝐴 − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶)))
192188, 189, 190, 191syl3an 1368 . . . . . . 7 (((𝐴 − 1) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶)))
19313, 4, 5, 192syl3anc 1326 . . . . . 6 (𝜑 → ((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶)))
194187, 193mpbid 222 . . . . 5 (𝜑 → ((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶))
195 lediv1 10888 . . . . . 6 ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ (𝐵𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)))
19615, 7, 47, 195syl3anc 1326 . . . . 5 (𝜑 → (((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)))
197194, 196mpbid 222 . . . 4 (𝜑 → (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁))
198 flword2 12614 . . . 4 (((((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℝ ∧ ((𝐵𝐶) / 𝑁) ∈ ℝ ∧ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)) → (⌊‘((𝐵𝐶) / 𝑁)) ∈ (ℤ‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
19916, 9, 197, 198syl3anc 1326 . . 3 (𝜑 → (⌊‘((𝐵𝐶) / 𝑁)) ∈ (ℤ‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
200 uznn0sub 11719 . . 3 ((⌊‘((𝐵𝐶) / 𝑁)) ∈ (ℤ‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) → ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℕ0)
201 hashfz1 13134 . . 3 (((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℕ0 → (#‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
202199, 200, 2013syl 18 . 2 (𝜑 → (#‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
203185, 202eqtr3d 2658 1 (𝜑 → (#‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cen 7952  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  cfl 12591  #chash 13117  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fl 12593  df-hash 13118  df-dvds 14984
This theorem is referenced by:  phiprmpw  15481  prmreclem4  15623  ppiub  24929  hashnzfz  38519
  Copyright terms: Public domain W3C validator