| Step | Hyp | Ref
| Expression |
| 1 | | 1zzd 11408 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
| 2 | | hashdvds.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘(𝐴 − 1))) |
| 3 | | eluzelz 11697 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈
(ℤ≥‘(𝐴 − 1)) → 𝐵 ∈ ℤ) |
| 4 | 2, 3 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 5 | | hashdvds.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 6 | 4, 5 | zsubcld 11487 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 − 𝐶) ∈ ℤ) |
| 7 | 6 | zred 11482 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 − 𝐶) ∈ ℝ) |
| 8 | | hashdvds.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 9 | 7, 8 | nndivred 11069 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 − 𝐶) / 𝑁) ∈ ℝ) |
| 10 | 9 | flcld 12599 |
. . . . . . 7
⊢ (𝜑 → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈ ℤ) |
| 11 | | hashdvds.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 12 | | peano2zm 11420 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℤ) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 − 1) ∈ ℤ) |
| 14 | 13, 5 | zsubcld 11487 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 − 1) − 𝐶) ∈ ℤ) |
| 15 | 14 | zred 11482 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 − 1) − 𝐶) ∈ ℝ) |
| 16 | 15, 8 | nndivred 11069 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℝ) |
| 17 | 16 | flcld 12599 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ) |
| 18 | 10, 17 | zsubcld 11487 |
. . . . . 6
⊢ (𝜑 → ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℤ) |
| 19 | | fzen 12358 |
. . . . . 6
⊢ ((1
∈ ℤ ∧ ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℤ ∧
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)) ∈ ℤ) →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ≈ ((1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) |
| 20 | 1, 18, 17, 19 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ≈ ((1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) |
| 21 | | ax-1cn 9994 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 22 | 17 | zcnd 11483 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℂ) |
| 23 | | addcom 10222 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℂ) → (1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁))) = ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)) |
| 24 | 21, 22, 23 | sylancr 695 |
. . . . . 6
⊢ (𝜑 → (1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁))) = ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)) |
| 25 | 10 | zcnd 11483 |
. . . . . . 7
⊢ (𝜑 → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈ ℂ) |
| 26 | 25, 22 | npcand 10396 |
. . . . . 6
⊢ (𝜑 → (((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) = (⌊‘((𝐵 − 𝐶) / 𝑁))) |
| 27 | 24, 26 | oveq12d 6668 |
. . . . 5
⊢ (𝜑 → ((1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) = (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 28 | 20, 27 | breqtrd 4679 |
. . . 4
⊢ (𝜑 →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ≈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁)))) |
| 29 | | ovexd 6680 |
. . . . 5
⊢ (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∈ V) |
| 30 | | fzfi 12771 |
. . . . . 6
⊢ (𝐴...𝐵) ∈ Fin |
| 31 | | rabexg 4812 |
. . . . . 6
⊢ ((𝐴...𝐵) ∈ Fin → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ V) |
| 32 | 30, 31 | mp1i 13 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ V) |
| 33 | | elfzle1 12344 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁))) →
((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) + 1) ≤ 𝑧) |
| 34 | 33 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧) |
| 35 | | elfzelz 12342 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁))) → 𝑧 ∈ ℤ) |
| 36 | | zltp1le 11427 |
. . . . . . . . . . . . . 14
⊢
(((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ ∧ 𝑧 ∈ ℤ) →
((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) < 𝑧 ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧)) |
| 37 | 17, 35, 36 | syl2an 494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧 ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧)) |
| 38 | 34, 37 | mpbird 247 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧) |
| 39 | | fllt 12607 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 − 1)
− 𝐶) / 𝑁) ∈ ℝ ∧ 𝑧 ∈ ℤ) →
((((𝐴 − 1) −
𝐶) / 𝑁) < 𝑧 ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧)) |
| 40 | 16, 35, 39 | syl2an 494 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧)) |
| 41 | 38, 40 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧) |
| 42 | 15 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝐴 − 1) − 𝐶) ∈ ℝ) |
| 43 | 35 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ∈ ℤ) |
| 44 | 43 | zred 11482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ∈ ℝ) |
| 45 | 8 | nnred 11035 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 46 | 8 | nngt0d 11064 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝑁) |
| 47 | 45, 46 | jca 554 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
| 48 | 47 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
| 49 | | ltdivmul2 10900 |
. . . . . . . . . . . 12
⊢ ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 <
𝑁)) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁))) |
| 50 | 42, 44, 48, 49 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁))) |
| 51 | 41, 50 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁)) |
| 52 | 13 | zred 11482 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 − 1) ∈ ℝ) |
| 53 | 52 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝐴 − 1) ∈ ℝ) |
| 54 | 5 | zred 11482 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 55 | 54 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐶 ∈ ℝ) |
| 56 | 8 | nnzd 11481 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 57 | 56 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑁 ∈ ℤ) |
| 58 | 43, 57 | zmulcld 11488 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℤ) |
| 59 | 58 | zred 11482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℝ) |
| 60 | 53, 55, 59 | ltsubaddd 10623 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶))) |
| 61 | 51, 60 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶)) |
| 62 | 11 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐴 ∈ ℤ) |
| 63 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐶 ∈ ℤ) |
| 64 | 58, 63 | zaddcld 11486 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ ℤ) |
| 65 | | zlem1lt 11429 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ ((𝑧 · 𝑁) + 𝐶) ∈ ℤ) → (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶))) |
| 66 | 62, 64, 65 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶))) |
| 67 | 61, 66 | mpbird 247 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐴 ≤ ((𝑧 · 𝑁) + 𝐶)) |
| 68 | | elfzle2 12345 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁))) → 𝑧 ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))) |
| 69 | 68 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))) |
| 70 | | flge 12606 |
. . . . . . . . . . . 12
⊢ ((((𝐵 − 𝐶) / 𝑁) ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ ((𝐵 − 𝐶) / 𝑁) ↔ 𝑧 ≤ (⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 71 | 9, 35, 70 | syl2an 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 ≤ ((𝐵 − 𝐶) / 𝑁) ↔ 𝑧 ≤ (⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 72 | 69, 71 | mpbird 247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ≤ ((𝐵 − 𝐶) / 𝑁)) |
| 73 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝐵 − 𝐶) ∈ ℝ) |
| 74 | | lemuldiv 10903 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ∧ (𝐵 − 𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑧 · 𝑁) ≤ (𝐵 − 𝐶) ↔ 𝑧 ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 75 | 44, 73, 48, 74 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) ≤ (𝐵 − 𝐶) ↔ 𝑧 ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 76 | 72, 75 | mpbird 247 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 · 𝑁) ≤ (𝐵 − 𝐶)) |
| 77 | 4 | zred 11482 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 78 | 77 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐵 ∈ ℝ) |
| 79 | | leaddsub 10504 |
. . . . . . . . . 10
⊢ (((𝑧 · 𝑁) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝑧 · 𝑁) + 𝐶) ≤ 𝐵 ↔ (𝑧 · 𝑁) ≤ (𝐵 − 𝐶))) |
| 80 | 59, 55, 78, 79 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) ≤ 𝐵 ↔ (𝑧 · 𝑁) ≤ (𝐵 − 𝐶))) |
| 81 | 76, 80 | mpbird 247 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵) |
| 82 | 4 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐵 ∈ ℤ) |
| 83 | | elfz 12332 |
. . . . . . . . 9
⊢ ((((𝑧 · 𝑁) + 𝐶) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵) ↔ (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ∧ ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵))) |
| 84 | 64, 62, 82, 83 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵) ↔ (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ∧ ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵))) |
| 85 | 67, 81, 84 | mpbir2and 957 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵)) |
| 86 | | dvdsmul2 15004 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑧 · 𝑁)) |
| 87 | 43, 57, 86 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑁 ∥ (𝑧 · 𝑁)) |
| 88 | 58 | zcnd 11483 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℂ) |
| 89 | 5 | zcnd 11483 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 90 | 89 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐶 ∈ ℂ) |
| 91 | 88, 90 | pncand 10393 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) − 𝐶) = (𝑧 · 𝑁)) |
| 92 | 87, 91 | breqtrrd 4681 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶)) |
| 93 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑥 = ((𝑧 · 𝑁) + 𝐶) → (𝑥 − 𝐶) = (((𝑧 · 𝑁) + 𝐶) − 𝐶)) |
| 94 | 93 | breq2d 4665 |
. . . . . . . 8
⊢ (𝑥 = ((𝑧 · 𝑁) + 𝐶) → (𝑁 ∥ (𝑥 − 𝐶) ↔ 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶))) |
| 95 | 94 | elrab 3363 |
. . . . . . 7
⊢ (((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ↔ (((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶))) |
| 96 | 85, 92, 95 | sylanbrc 698 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 97 | 96 | ex 450 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) → ((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) |
| 98 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 − 𝐶) = (𝑦 − 𝐶)) |
| 99 | 98 | breq2d 4665 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑁 ∥ (𝑥 − 𝐶) ↔ 𝑁 ∥ (𝑦 − 𝐶))) |
| 100 | 99 | elrab 3363 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ↔ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) |
| 101 | 52 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝐴 − 1) ∈ ℝ) |
| 102 | | elfzelz 12342 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ) |
| 103 | 102 | ad2antrl 764 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑦 ∈ ℤ) |
| 104 | 103 | zred 11482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑦 ∈ ℝ) |
| 105 | 54 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐶 ∈ ℝ) |
| 106 | | elfzle1 12344 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝐴...𝐵) → 𝐴 ≤ 𝑦) |
| 107 | 106 | ad2antrl 764 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐴 ≤ 𝑦) |
| 108 | 11 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐴 ∈ ℤ) |
| 109 | | zlem1lt 11429 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐴 ≤ 𝑦 ↔ (𝐴 − 1) < 𝑦)) |
| 110 | 108, 103,
109 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝐴 ≤ 𝑦 ↔ (𝐴 − 1) < 𝑦)) |
| 111 | 107, 110 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝐴 − 1) < 𝑦) |
| 112 | 101, 104,
105, 111 | ltsub1dd 10639 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝐴 − 1) − 𝐶) < (𝑦 − 𝐶)) |
| 113 | 15 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝐴 − 1) − 𝐶) ∈ ℝ) |
| 114 | 5 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐶 ∈ ℤ) |
| 115 | 103, 114 | zsubcld 11487 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑦 − 𝐶) ∈ ℤ) |
| 116 | 115 | zred 11482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑦 − 𝐶) ∈ ℝ) |
| 117 | 47 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
| 118 | | ltdiv1 10887 |
. . . . . . . . . . . 12
⊢ ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ (𝑦 − 𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝐴 − 1) − 𝐶) < (𝑦 − 𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁))) |
| 119 | 113, 116,
117, 118 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (((𝐴 − 1) − 𝐶) < (𝑦 − 𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁))) |
| 120 | 112, 119 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁)) |
| 121 | 16 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℝ) |
| 122 | | simprr 796 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑁 ∥ (𝑦 − 𝐶)) |
| 123 | 56 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑁 ∈ ℤ) |
| 124 | 8 | nnne0d 11065 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ≠ 0) |
| 125 | 124 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑁 ≠ 0) |
| 126 | | dvdsval2 14986 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ (𝑦 − 𝐶) ∈ ℤ) → (𝑁 ∥ (𝑦 − 𝐶) ↔ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ)) |
| 127 | 123, 125,
115, 126 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑁 ∥ (𝑦 − 𝐶) ↔ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ)) |
| 128 | 122, 127 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) / 𝑁) ∈ ℤ) |
| 129 | | fllt 12607 |
. . . . . . . . . . 11
⊢
(((((𝐴 − 1)
− 𝐶) / 𝑁) ∈ ℝ ∧ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ) → ((((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁) ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦 − 𝐶) / 𝑁))) |
| 130 | 121, 128,
129 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁) ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦 − 𝐶) / 𝑁))) |
| 131 | 120, 130 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦 − 𝐶) / 𝑁)) |
| 132 | 17 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ) |
| 133 | | zltp1le 11427 |
. . . . . . . . . 10
⊢
(((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ ∧ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ) →
((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) < ((𝑦 − 𝐶) / 𝑁) ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁))) |
| 134 | 132, 128,
133 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦 − 𝐶) / 𝑁) ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁))) |
| 135 | 131, 134 | mpbid 222 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁)) |
| 136 | 77 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐵 ∈ ℝ) |
| 137 | | elfzle2 12345 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐴...𝐵) → 𝑦 ≤ 𝐵) |
| 138 | 137 | ad2antrl 764 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑦 ≤ 𝐵) |
| 139 | 104, 136,
105, 138 | lesub1dd 10643 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑦 − 𝐶) ≤ (𝐵 − 𝐶)) |
| 140 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝐵 − 𝐶) ∈ ℝ) |
| 141 | | lediv1 10888 |
. . . . . . . . . . 11
⊢ (((𝑦 − 𝐶) ∈ ℝ ∧ (𝐵 − 𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑦 − 𝐶) ≤ (𝐵 − 𝐶) ↔ ((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 142 | 116, 140,
117, 141 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) ≤ (𝐵 − 𝐶) ↔ ((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 143 | 139, 142 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁)) |
| 144 | 9 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝐵 − 𝐶) / 𝑁) ∈ ℝ) |
| 145 | | flge 12606 |
. . . . . . . . . 10
⊢ ((((𝐵 − 𝐶) / 𝑁) ∈ ℝ ∧ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ) → (((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁) ↔ ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 146 | 144, 128,
145 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁) ↔ ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 147 | 143, 146 | mpbid 222 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))) |
| 148 | 17 | peano2zd 11485 |
. . . . . . . . . 10
⊢ (𝜑 → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ) |
| 149 | 148 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ) |
| 150 | 10 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈ ℤ) |
| 151 | | elfz 12332 |
. . . . . . . . 9
⊢ ((((𝑦 − 𝐶) / 𝑁) ∈ ℤ ∧
((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) + 1) ∈ ℤ
∧ (⌊‘((𝐵
− 𝐶) / 𝑁)) ∈ ℤ) →
(((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ↔ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁) ∧ ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))))) |
| 152 | 128, 149,
150, 151 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ↔ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁) ∧ ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))))) |
| 153 | 135, 147,
152 | mpbir2and 957 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 154 | 153 | ex 450 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)) → ((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))))) |
| 155 | 100, 154 | syl5bi 232 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} → ((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))))) |
| 156 | 100 | anbi2i 730 |
. . . . . . 7
⊢ ((𝑧 ∈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) ↔ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) |
| 157 | 115 | zcnd 11483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑦 − 𝐶) ∈ ℂ) |
| 158 | 157 | adantrl 752 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (𝑦 − 𝐶) ∈ ℂ) |
| 159 | 43 | zcnd 11483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ∈ ℂ) |
| 160 | 159 | adantrr 753 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝑧 ∈ ℂ) |
| 161 | 8 | nncnd 11036 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 162 | 161 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝑁 ∈ ℂ) |
| 163 | 124 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝑁 ≠ 0) |
| 164 | 158, 160,
162, 163 | divmul3d 10835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (((𝑦 − 𝐶) / 𝑁) = 𝑧 ↔ (𝑦 − 𝐶) = (𝑧 · 𝑁))) |
| 165 | 103 | zcnd 11483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑦 ∈ ℂ) |
| 166 | 165 | adantrl 752 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝑦 ∈ ℂ) |
| 167 | 89 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝐶 ∈ ℂ) |
| 168 | 88 | adantrr 753 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (𝑧 · 𝑁) ∈ ℂ) |
| 169 | 166, 167,
168 | subadd2d 10411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → ((𝑦 − 𝐶) = (𝑧 · 𝑁) ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦)) |
| 170 | 164, 169 | bitrd 268 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (((𝑦 − 𝐶) / 𝑁) = 𝑧 ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦)) |
| 171 | | eqcom 2629 |
. . . . . . . 8
⊢ (𝑧 = ((𝑦 − 𝐶) / 𝑁) ↔ ((𝑦 − 𝐶) / 𝑁) = 𝑧) |
| 172 | | eqcom 2629 |
. . . . . . . 8
⊢ (𝑦 = ((𝑧 · 𝑁) + 𝐶) ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦) |
| 173 | 170, 171,
172 | 3bitr4g 303 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (𝑧 = ((𝑦 − 𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶))) |
| 174 | 156, 173 | sylan2b 492 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) → (𝑧 = ((𝑦 − 𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶))) |
| 175 | 174 | ex 450 |
. . . . 5
⊢ (𝜑 → ((𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) → (𝑧 = ((𝑦 − 𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶)))) |
| 176 | 29, 32, 97, 155, 175 | en3d 7992 |
. . . 4
⊢ (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 177 | | entr 8008 |
. . . 4
⊢
(((1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) → (1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 178 | 28, 176, 177 | syl2anc 693 |
. . 3
⊢ (𝜑 →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 179 | | fzfi 12771 |
. . . 4
⊢
(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ∈ Fin |
| 180 | | ssrab2 3687 |
. . . . 5
⊢ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ⊆ (𝐴...𝐵) |
| 181 | | ssfi 8180 |
. . . . 5
⊢ (((𝐴...𝐵) ∈ Fin ∧ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ⊆ (𝐴...𝐵)) → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ Fin) |
| 182 | 30, 180, 181 | mp2an 708 |
. . . 4
⊢ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ Fin |
| 183 | | hashen 13135 |
. . . 4
⊢
(((1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ∈ Fin ∧ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ Fin) →
((#‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (#‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) ↔ (1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) |
| 184 | 179, 182,
183 | mp2an 708 |
. . 3
⊢
((#‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (#‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) ↔ (1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 185 | 178, 184 | sylibr 224 |
. 2
⊢ (𝜑 →
(#‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (#‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) |
| 186 | | eluzle 11700 |
. . . . . . 7
⊢ (𝐵 ∈
(ℤ≥‘(𝐴 − 1)) → (𝐴 − 1) ≤ 𝐵) |
| 187 | 2, 186 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐴 − 1) ≤ 𝐵) |
| 188 | | zre 11381 |
. . . . . . . 8
⊢ ((𝐴 − 1) ∈ ℤ
→ (𝐴 − 1) ∈
ℝ) |
| 189 | | zre 11381 |
. . . . . . . 8
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℝ) |
| 190 | | zre 11381 |
. . . . . . . 8
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℝ) |
| 191 | | lesub1 10522 |
. . . . . . . 8
⊢ (((𝐴 − 1) ∈ ℝ ∧
𝐵 ∈ ℝ ∧
𝐶 ∈ ℝ) →
((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶))) |
| 192 | 188, 189,
190, 191 | syl3an 1368 |
. . . . . . 7
⊢ (((𝐴 − 1) ∈ ℤ ∧
𝐵 ∈ ℤ ∧
𝐶 ∈ ℤ) →
((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶))) |
| 193 | 13, 4, 5, 192 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → ((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶))) |
| 194 | 187, 193 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶)) |
| 195 | | lediv1 10888 |
. . . . . 6
⊢ ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ (𝐵 − 𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 196 | 15, 7, 47, 195 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → (((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 197 | 194, 196 | mpbid 222 |
. . . 4
⊢ (𝜑 → (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁)) |
| 198 | | flword2 12614 |
. . . 4
⊢
(((((𝐴 − 1)
− 𝐶) / 𝑁) ∈ ℝ ∧ ((𝐵 − 𝐶) / 𝑁) ∈ ℝ ∧ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁)) → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈
(ℤ≥‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| 199 | 16, 9, 197, 198 | syl3anc 1326 |
. . 3
⊢ (𝜑 → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈
(ℤ≥‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| 200 | | uznn0sub 11719 |
. . 3
⊢
((⌊‘((𝐵
− 𝐶) / 𝑁)) ∈
(ℤ≥‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) → ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈
ℕ0) |
| 201 | | hashfz1 13134 |
. . 3
⊢
(((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁))) ∈ ℕ0
→ (#‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| 202 | 199, 200,
201 | 3syl 18 |
. 2
⊢ (𝜑 →
(#‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| 203 | 185, 202 | eqtr3d 2658 |
1
⊢ (𝜑 → (#‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |