Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem9 Structured version   Visualization version   Unicode version

Theorem heiborlem9 33618
Description: Lemma for heibor 33620. Discharge the hypotheses of heiborlem8 33617 by applying caubl 23106 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.)
Hypotheses
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
heibor.3  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
heibor.4  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
heibor.5  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
heibor.6  |-  ( ph  ->  D  e.  ( CMet `  X ) )
heibor.7  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
heibor.8  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
heibor.9  |-  ( ph  ->  A. x  e.  G  ( ( T `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( T `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
heibor.10  |-  ( ph  ->  C G 0 )
heibor.11  |-  S  =  seq 0 ( T ,  ( m  e. 
NN0  |->  if ( m  =  0 ,  C ,  ( m  - 
1 ) ) ) )
heibor.12  |-  M  =  ( n  e.  NN  |->  <. ( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.
)
heibor.13  |-  ( ph  ->  U  C_  J )
heiborlem9.14  |-  ( ph  ->  U. U  =  X )
Assertion
Ref Expression
heiborlem9  |-  ( ph  ->  ps )
Distinct variable groups:    x, n, y, u, F    x, G    ph, x    m, n, u, v, x, y, z, D    m, M, u, x, y, z    T, m, n, x, y, z    B, n, u, v, y   
m, J, n, u, v, x, y, z    U, n, u, v, x, y, z    ps, y,
z    S, m, n, u, v, x, y, z   
m, X, n, u, v, x, y, z    C, m, n, u, v, y    n, K, x, y, z    x, B
Allowed substitution hints:    ph( y, z, v, u, m, n)    ps( x, v, u, m, n)    B( z, m)    C( x, z)    T( v, u)    U( m)    F( z, v, m)    G( y, z, v, u, m, n)    K( v, u, m)    M( v, n)

Proof of Theorem heiborlem9
Dummy variables  t 
k  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.6 . . . . . . 7  |-  ( ph  ->  D  e.  ( CMet `  X ) )
2 cmetmet 23084 . . . . . . 7  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
3 metxmet 22139 . . . . . . 7  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
41, 2, 33syl 18 . . . . . 6  |-  ( ph  ->  D  e.  ( *Met `  X ) )
5 heibor.1 . . . . . . 7  |-  J  =  ( MetOpen `  D )
65mopntopon 22244 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
74, 6syl 17 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  X ) )
8 heibor.3 . . . . . . . . 9  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
9 heibor.4 . . . . . . . . 9  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
10 heibor.5 . . . . . . . . 9  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
11 heibor.7 . . . . . . . . 9  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
12 heibor.8 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
13 heibor.9 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  G  ( ( T `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( T `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
14 heibor.10 . . . . . . . . 9  |-  ( ph  ->  C G 0 )
15 heibor.11 . . . . . . . . 9  |-  S  =  seq 0 ( T ,  ( m  e. 
NN0  |->  if ( m  =  0 ,  C ,  ( m  - 
1 ) ) ) )
16 heibor.12 . . . . . . . . 9  |-  M  =  ( n  e.  NN  |->  <. ( S `  n
) ,  ( 3  /  ( 2 ^ n ) ) >.
)
175, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem5 33614 . . . . . . . 8  |-  ( ph  ->  M : NN --> ( X  X.  RR+ ) )
185, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem6 33615 . . . . . . . 8  |-  ( ph  ->  A. k  e.  NN  ( ( ball `  D
) `  ( M `  ( k  +  1 ) ) )  C_  ( ( ball `  D
) `  ( M `  k ) ) )
195, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16heiborlem7 33616 . . . . . . . . 9  |-  A. r  e.  RR+  E. k  e.  NN  ( 2nd `  ( M `  k )
)  <  r
2019a1i 11 . . . . . . . 8  |-  ( ph  ->  A. r  e.  RR+  E. k  e.  NN  ( 2nd `  ( M `  k ) )  < 
r )
214, 17, 18, 20caubl 23106 . . . . . . 7  |-  ( ph  ->  ( 1st  o.  M
)  e.  ( Cau `  D ) )
225cmetcau 23087 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  ( 1st  o.  M )  e.  ( Cau `  D
) )  ->  ( 1st  o.  M )  e. 
dom  ( ~~> t `  J ) )
231, 21, 22syl2anc 693 . . . . . 6  |-  ( ph  ->  ( 1st  o.  M
)  e.  dom  ( ~~> t `  J )
)
245methaus 22325 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Haus )
254, 24syl 17 . . . . . . 7  |-  ( ph  ->  J  e.  Haus )
26 lmfun 21185 . . . . . . 7  |-  ( J  e.  Haus  ->  Fun  ( ~~> t `  J )
)
27 funfvbrb 6330 . . . . . . 7  |-  ( Fun  ( ~~> t `  J
)  ->  ( ( 1st  o.  M )  e. 
dom  ( ~~> t `  J )  <->  ( 1st  o.  M ) ( ~~> t `  J ) ( ( ~~> t `  J ) `
 ( 1st  o.  M ) ) ) )
2825, 26, 273syl 18 . . . . . 6  |-  ( ph  ->  ( ( 1st  o.  M )  e.  dom  (
~~> t `  J )  <-> 
( 1st  o.  M
) ( ~~> t `  J ) ( ( ~~> t `  J ) `
 ( 1st  o.  M ) ) ) )
2923, 28mpbid 222 . . . . 5  |-  ( ph  ->  ( 1st  o.  M
) ( ~~> t `  J ) ( ( ~~> t `  J ) `
 ( 1st  o.  M ) ) )
30 lmcl 21101 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  ( 1st  o.  M ) ( ~~> t `  J ) ( ( ~~> t `  J ) `  ( 1st  o.  M ) ) )  ->  ( ( ~~> t `  J ) `  ( 1st  o.  M
) )  e.  X
)
317, 29, 30syl2anc 693 . . . 4  |-  ( ph  ->  ( ( ~~> t `  J ) `  ( 1st  o.  M ) )  e.  X )
32 heiborlem9.14 . . . 4  |-  ( ph  ->  U. U  =  X )
3331, 32eleqtrrd 2704 . . 3  |-  ( ph  ->  ( ( ~~> t `  J ) `  ( 1st  o.  M ) )  e.  U. U )
34 eluni2 4440 . . 3  |-  ( ( ( ~~> t `  J
) `  ( 1st  o.  M ) )  e. 
U. U  <->  E. t  e.  U  ( ( ~~> t `  J ) `  ( 1st  o.  M
) )  e.  t )
3533, 34sylib 208 . 2  |-  ( ph  ->  E. t  e.  U  ( ( ~~> t `  J ) `  ( 1st  o.  M ) )  e.  t )
361adantr 481 . . 3  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  D  e.  ( CMet `  X ) )
3711adantr 481 . . 3  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
3812adantr 481 . . 3  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
3913adantr 481 . . 3  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  A. x  e.  G  ( ( T `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( T `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
4014adantr 481 . . 3  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  C G 0 )
41 heibor.13 . . . 4  |-  ( ph  ->  U  C_  J )
4241adantr 481 . . 3  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  U  C_  J )
43 fvex 6201 . . 3  |-  ( ( ~~> t `  J ) `
 ( 1st  o.  M ) )  e. 
_V
44 simprr 796 . . 3  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  -> 
( ( ~~> t `  J ) `  ( 1st  o.  M ) )  e.  t )
45 simprl 794 . . 3  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  -> 
t  e.  U )
4629adantr 481 . . 3  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  -> 
( 1st  o.  M
) ( ~~> t `  J ) ( ( ~~> t `  J ) `
 ( 1st  o.  M ) ) )
475, 8, 9, 10, 36, 37, 38, 39, 40, 15, 16, 42, 43, 44, 45, 46heiborlem8 33617 . 2  |-  ( (
ph  /\  ( t  e.  U  /\  (
( ~~> t `  J
) `  ( 1st  o.  M ) )  e.  t ) )  ->  ps )
4835, 47rexlimddv 3035 1  |-  ( ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ifcif 4086   ~Pcpw 4158   <.cop 4183   U.cuni 4436   U_ciun 4520   class class class wbr 4653   {copab 4712    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   RR+crp 11832    seqcseq 12801   ^cexp 12860   *Metcxmt 19731   Metcme 19732   ballcbl 19733   MetOpencmopn 19736  TopOnctopon 20715   ~~> tclm 21030   Hauscha 21112   Caucca 23051   CMetcms 23052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fl 12593  df-seq 12802  df-exp 12861  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lm 21033  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-cfil 23053  df-cau 23054  df-cmet 23055
This theorem is referenced by:  heiborlem10  33619
  Copyright terms: Public domain W3C validator