| Step | Hyp | Ref
| Expression |
| 1 | | i1ff 23443 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
| 2 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
→ 𝐹:ℝ⟶ℝ) |
| 3 | | ffn 6045 |
. . . . . . 7
⊢ (𝐹:ℝ⟶ℝ →
𝐹 Fn
ℝ) |
| 4 | 2, 3 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
→ 𝐹 Fn
ℝ) |
| 5 | | fnfvelrn 6356 |
. . . . . 6
⊢ ((𝐹 Fn ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 6 | 4, 5 | sylan 488 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑥 ∈ ℝ)
→ (𝐹‘𝑥) ∈ ran 𝐹) |
| 7 | | i1f0rn 23449 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ 0 ∈ ran 𝐹) |
| 8 | 7 | ad2antrr 762 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑥 ∈ ℝ)
→ 0 ∈ ran 𝐹) |
| 9 | 6, 8 | ifcld 4131 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑥 ∈ ℝ)
→ if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0) ∈ ran 𝐹) |
| 10 | | i1fres.1 |
. . . 4
⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0)) |
| 11 | 9, 10 | fmptd 6385 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
→ 𝐺:ℝ⟶ran
𝐹) |
| 12 | | frn 6053 |
. . . 4
⊢ (𝐹:ℝ⟶ℝ →
ran 𝐹 ⊆
ℝ) |
| 13 | 2, 12 | syl 17 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
→ ran 𝐹 ⊆
ℝ) |
| 14 | 11, 13 | fssd 6057 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
→ 𝐺:ℝ⟶ℝ) |
| 15 | | i1frn 23444 |
. . . 4
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
| 16 | 15 | adantr 481 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
→ ran 𝐹 ∈
Fin) |
| 17 | | frn 6053 |
. . . 4
⊢ (𝐺:ℝ⟶ran 𝐹 → ran 𝐺 ⊆ ran 𝐹) |
| 18 | 11, 17 | syl 17 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
→ ran 𝐺 ⊆ ran
𝐹) |
| 19 | | ssfi 8180 |
. . 3
⊢ ((ran
𝐹 ∈ Fin ∧ ran
𝐺 ⊆ ran 𝐹) → ran 𝐺 ∈ Fin) |
| 20 | 16, 18, 19 | syl2anc 693 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
→ ran 𝐺 ∈
Fin) |
| 21 | | eleq1 2689 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
| 22 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 23 | 21, 22 | ifbieq1d 4109 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → if(𝑥 ∈ 𝐴, (𝐹‘𝑥), 0) = if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0)) |
| 24 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝑧) ∈ V |
| 25 | | c0ex 10034 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
| 26 | 24, 25 | ifex 4156 |
. . . . . . . . . . . . 13
⊢ if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0) ∈ V |
| 27 | 23, 10, 26 | fvmpt 6282 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℝ → (𝐺‘𝑧) = if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0)) |
| 28 | 27 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐺‘𝑧) = if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0)) |
| 29 | 28 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺‘𝑧) = 𝑦 ↔ if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0) = 𝑦)) |
| 30 | | eldifsni 4320 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (ran 𝐺 ∖ {0}) → 𝑦 ≠ 0) |
| 31 | 30 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → 𝑦 ≠ 0) |
| 32 | 31 | necomd 2849 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → 0 ≠
𝑦) |
| 33 | | iffalse 4095 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑧 ∈ 𝐴 → if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0) = 0) |
| 34 | 33 | neeq1d 2853 |
. . . . . . . . . . . . 13
⊢ (¬
𝑧 ∈ 𝐴 → (if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0) ≠ 𝑦 ↔ 0 ≠ 𝑦)) |
| 35 | 32, 34 | syl5ibrcom 237 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (¬
𝑧 ∈ 𝐴 → if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0) ≠ 𝑦)) |
| 36 | 35 | necon4bd 2814 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) →
(if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0) = 𝑦 → 𝑧 ∈ 𝐴)) |
| 37 | 36 | pm4.71rd 667 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) →
(if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0) = 𝑦 ↔ (𝑧 ∈ 𝐴 ∧ if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0) = 𝑦))) |
| 38 | 29, 37 | bitrd 268 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺‘𝑧) = 𝑦 ↔ (𝑧 ∈ 𝐴 ∧ if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0) = 𝑦))) |
| 39 | | iftrue 4092 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐴 → if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0) = (𝐹‘𝑧)) |
| 40 | 39 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐴 → (if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0) = 𝑦 ↔ (𝐹‘𝑧) = 𝑦)) |
| 41 | 40 | pm5.32i 669 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐴 ∧ if(𝑧 ∈ 𝐴, (𝐹‘𝑧), 0) = 𝑦) ↔ (𝑧 ∈ 𝐴 ∧ (𝐹‘𝑧) = 𝑦)) |
| 42 | 38, 41 | syl6bb 276 |
. . . . . . . 8
⊢ ((((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺‘𝑧) = 𝑦 ↔ (𝑧 ∈ 𝐴 ∧ (𝐹‘𝑧) = 𝑦))) |
| 43 | 42 | pm5.32da 673 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦) ↔ (𝑧 ∈ ℝ ∧ (𝑧 ∈ 𝐴 ∧ (𝐹‘𝑧) = 𝑦)))) |
| 44 | | an12 838 |
. . . . . . 7
⊢ ((𝑧 ∈ ℝ ∧ (𝑧 ∈ 𝐴 ∧ (𝐹‘𝑧) = 𝑦)) ↔ (𝑧 ∈ 𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = 𝑦))) |
| 45 | 43, 44 | syl6bb 276 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦) ↔ (𝑧 ∈ 𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = 𝑦)))) |
| 46 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝐺:ℝ⟶ran 𝐹 → 𝐺 Fn ℝ) |
| 47 | 11, 46 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
→ 𝐺 Fn
ℝ) |
| 48 | 47 | adantr 481 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐺 Fn ℝ) |
| 49 | | fniniseg 6338 |
. . . . . . 7
⊢ (𝐺 Fn ℝ → (𝑧 ∈ (◡𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦))) |
| 50 | 48, 49 | syl 17 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (◡𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺‘𝑧) = 𝑦))) |
| 51 | 4 | adantr 481 |
. . . . . . . 8
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐹 Fn ℝ) |
| 52 | | fniniseg 6338 |
. . . . . . . 8
⊢ (𝐹 Fn ℝ → (𝑧 ∈ (◡𝐹 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = 𝑦))) |
| 53 | 51, 52 | syl 17 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (◡𝐹 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = 𝑦))) |
| 54 | 53 | anbi2d 740 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ 𝐴 ∧ 𝑧 ∈ (◡𝐹 “ {𝑦})) ↔ (𝑧 ∈ 𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹‘𝑧) = 𝑦)))) |
| 55 | 45, 50, 54 | 3bitr4d 300 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (◡𝐺 “ {𝑦}) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ (◡𝐹 “ {𝑦})))) |
| 56 | | elin 3796 |
. . . . 5
⊢ (𝑧 ∈ (𝐴 ∩ (◡𝐹 “ {𝑦})) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ (◡𝐹 “ {𝑦}))) |
| 57 | 55, 56 | syl6bbr 278 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (◡𝐺 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 ∩ (◡𝐹 “ {𝑦})))) |
| 58 | 57 | eqrdv 2620 |
. . 3
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑦}) = (𝐴 ∩ (◡𝐹 “ {𝑦}))) |
| 59 | | simplr 792 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐴 ∈ dom
vol) |
| 60 | | i1fima 23445 |
. . . . 5
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 61 | 60 | ad2antrr 762 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 62 | | inmbl 23310 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧ (◡𝐹 “ {𝑦}) ∈ dom vol) → (𝐴 ∩ (◡𝐹 “ {𝑦})) ∈ dom vol) |
| 63 | 59, 61, 62 | syl2anc 693 |
. . 3
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐴 ∩ (◡𝐹 “ {𝑦})) ∈ dom vol) |
| 64 | 58, 63 | eqeltrd 2701 |
. 2
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑦}) ∈ dom vol) |
| 65 | 58 | fveq2d 6195 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) →
(vol‘(◡𝐺 “ {𝑦})) = (vol‘(𝐴 ∩ (◡𝐹 “ {𝑦})))) |
| 66 | | mblvol 23298 |
. . . . 5
⊢ ((𝐴 ∩ (◡𝐹 “ {𝑦})) ∈ dom vol → (vol‘(𝐴 ∩ (◡𝐹 “ {𝑦}))) = (vol*‘(𝐴 ∩ (◡𝐹 “ {𝑦})))) |
| 67 | 63, 66 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) →
(vol‘(𝐴 ∩ (◡𝐹 “ {𝑦}))) = (vol*‘(𝐴 ∩ (◡𝐹 “ {𝑦})))) |
| 68 | 65, 67 | eqtrd 2656 |
. . 3
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) →
(vol‘(◡𝐺 “ {𝑦})) = (vol*‘(𝐴 ∩ (◡𝐹 “ {𝑦})))) |
| 69 | | inss2 3834 |
. . . . 5
⊢ (𝐴 ∩ (◡𝐹 “ {𝑦})) ⊆ (◡𝐹 “ {𝑦}) |
| 70 | 69 | a1i 11 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐴 ∩ (◡𝐹 “ {𝑦})) ⊆ (◡𝐹 “ {𝑦})) |
| 71 | | mblss 23299 |
. . . . 5
⊢ ((◡𝐹 “ {𝑦}) ∈ dom vol → (◡𝐹 “ {𝑦}) ⊆ ℝ) |
| 72 | 61, 71 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (◡𝐹 “ {𝑦}) ⊆ ℝ) |
| 73 | | mblvol 23298 |
. . . . . 6
⊢ ((◡𝐹 “ {𝑦}) ∈ dom vol → (vol‘(◡𝐹 “ {𝑦})) = (vol*‘(◡𝐹 “ {𝑦}))) |
| 74 | 61, 73 | syl 17 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) →
(vol‘(◡𝐹 “ {𝑦})) = (vol*‘(◡𝐹 “ {𝑦}))) |
| 75 | | i1fima2sn 23447 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) →
(vol‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
| 76 | 75 | adantlr 751 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) →
(vol‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
| 77 | 74, 76 | eqeltrrd 2702 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) →
(vol*‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
| 78 | | ovolsscl 23254 |
. . . 4
⊢ (((𝐴 ∩ (◡𝐹 “ {𝑦})) ⊆ (◡𝐹 “ {𝑦}) ∧ (◡𝐹 “ {𝑦}) ⊆ ℝ ∧ (vol*‘(◡𝐹 “ {𝑦})) ∈ ℝ) → (vol*‘(𝐴 ∩ (◡𝐹 “ {𝑦}))) ∈ ℝ) |
| 79 | 70, 72, 77, 78 | syl3anc 1326 |
. . 3
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) →
(vol*‘(𝐴 ∩ (◡𝐹 “ {𝑦}))) ∈ ℝ) |
| 80 | 68, 79 | eqeltrd 2701 |
. 2
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) →
(vol‘(◡𝐺 “ {𝑦})) ∈ ℝ) |
| 81 | 14, 20, 64, 80 | i1fd 23448 |
1
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐴 ∈ dom vol)
→ 𝐺 ∈ dom
∫1) |