Proof of Theorem ftc1anclem7
Step | Hyp | Ref
| Expression |
1 | | i1ff 23443 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
2 | 1 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝑓‘𝑥) ∈
ℝ) |
3 | 2 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝑓‘𝑥) ∈
ℂ) |
4 | | ax-icn 9995 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
5 | | i1ff 23443 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ dom ∫1
→ 𝑔:ℝ⟶ℝ) |
6 | 5 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝑔‘𝑥) ∈
ℝ) |
7 | 6 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝑔‘𝑥) ∈
ℂ) |
8 | | mulcl 10020 |
. . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑥) ∈ ℂ) → (i · (𝑔‘𝑥)) ∈ ℂ) |
9 | 4, 7, 8 | sylancr 695 |
. . . . . . . . 9
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (i · (𝑔‘𝑥)) ∈ ℂ) |
10 | | addcl 10018 |
. . . . . . . . 9
⊢ (((𝑓‘𝑥) ∈ ℂ ∧ (i · (𝑔‘𝑥)) ∈ ℂ) → ((𝑓‘𝑥) + (i · (𝑔‘𝑥))) ∈ ℂ) |
11 | 3, 9, 10 | syl2an 494 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑥
∈ ℝ)) → ((𝑓‘𝑥) + (i · (𝑔‘𝑥))) ∈ ℂ) |
12 | 11 | anandirs 874 |
. . . . . . 7
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → ((𝑓‘𝑥) + (i · (𝑔‘𝑥))) ∈ ℂ) |
13 | | reex 10027 |
. . . . . . . . 9
⊢ ℝ
∈ V |
14 | 13 | a1i 11 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ℝ ∈ V) |
15 | 2 | adantlr 751 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (𝑓‘𝑥) ∈ ℝ) |
16 | | ovexd 6680 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (i · (𝑔‘𝑥)) ∈ V) |
17 | 1 | feqmptd 6249 |
. . . . . . . . 9
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓‘𝑥))) |
18 | 17 | adantr 481 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑓
= (𝑥 ∈ ℝ ↦
(𝑓‘𝑥))) |
19 | 13 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑔 ∈ dom ∫1
→ ℝ ∈ V) |
20 | 4 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ i ∈ ℂ) |
21 | | fconstmpt 5163 |
. . . . . . . . . . 11
⊢ (ℝ
× {i}) = (𝑥 ∈
ℝ ↦ i) |
22 | 21 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑔 ∈ dom ∫1
→ (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i)) |
23 | 5 | feqmptd 6249 |
. . . . . . . . . 10
⊢ (𝑔 ∈ dom ∫1
→ 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔‘𝑥))) |
24 | 19, 20, 6, 22, 23 | offval2 6914 |
. . . . . . . . 9
⊢ (𝑔 ∈ dom ∫1
→ ((ℝ × {i}) ∘𝑓 · 𝑔) = (𝑥 ∈ ℝ ↦ (i · (𝑔‘𝑥)))) |
25 | 24 | adantl 482 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((ℝ × {i}) ∘𝑓
· 𝑔) = (𝑥 ∈ ℝ ↦ (i
· (𝑔‘𝑥)))) |
26 | 14, 15, 16, 18, 25 | offval2 6914 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑓 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝑔)) = (𝑥 ∈ ℝ ↦ ((𝑓‘𝑥) + (i · (𝑔‘𝑥))))) |
27 | | absf 14077 |
. . . . . . . . 9
⊢
abs:ℂ⟶ℝ |
28 | 27 | a1i 11 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → abs:ℂ⟶ℝ) |
29 | 28 | feqmptd 6249 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → abs = (𝑡 ∈ ℂ ↦ (abs‘𝑡))) |
30 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑡 = ((𝑓‘𝑥) + (i · (𝑔‘𝑥))) → (abs‘𝑡) = (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥))))) |
31 | 12, 26, 29, 30 | fmptco 6396 |
. . . . . 6
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝑔))) = (𝑥 ∈ ℝ ↦ (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥)))))) |
32 | | ftc1anclem3 33487 |
. . . . . 6
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝑔))) ∈ dom
∫1) |
33 | 31, 32 | eqeltrrd 2702 |
. . . . 5
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑥 ∈ ℝ ↦ (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥))))) ∈ dom
∫1) |
34 | | ioombl 23333 |
. . . . 5
⊢ (𝑢(,)𝑤) ∈ dom vol |
35 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → (𝑓‘𝑥) = (𝑓‘𝑡)) |
36 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑡 → (𝑔‘𝑥) = (𝑔‘𝑡)) |
37 | 36 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → (i · (𝑔‘𝑥)) = (i · (𝑔‘𝑡))) |
38 | 35, 37 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → ((𝑓‘𝑥) + (i · (𝑔‘𝑥))) = ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) |
39 | 38 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥)))) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
40 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ ↦
(abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥))))) = (𝑥 ∈ ℝ ↦ (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥))))) |
41 | | fvex 6201 |
. . . . . . . . . 10
⊢
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ V |
42 | 39, 40, 41 | fvmpt 6282 |
. . . . . . . . 9
⊢ (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦
(abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥)))))‘𝑡) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
43 | 42 | eqcomd 2628 |
. . . . . . . 8
⊢ (𝑡 ∈ ℝ →
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = ((𝑥 ∈ ℝ ↦ (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥)))))‘𝑡)) |
44 | 43 | ifeq1d 4104 |
. . . . . . 7
⊢ (𝑡 ∈ ℝ → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = if(𝑡 ∈ (𝑢(,)𝑤), ((𝑥 ∈ ℝ ↦ (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥)))))‘𝑡), 0)) |
45 | 44 | mpteq2ia 4740 |
. . . . . 6
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((𝑥 ∈ ℝ ↦ (abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥)))))‘𝑡), 0)) |
46 | 45 | i1fres 23472 |
. . . . 5
⊢ (((𝑥 ∈ ℝ ↦
(abs‘((𝑓‘𝑥) + (i · (𝑔‘𝑥))))) ∈ dom ∫1 ∧
(𝑢(,)𝑤) ∈ dom vol) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ dom
∫1) |
47 | 33, 34, 46 | sylancl 694 |
. . . 4
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ dom
∫1) |
48 | | breq2 4657 |
. . . . . . 7
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ↔ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
49 | | breq2 4657 |
. . . . . . 7
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ 0 ↔ 0 ≤
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
50 | | elioore 12205 |
. . . . . . . 8
⊢ (𝑡 ∈ (𝑢(,)𝑤) → 𝑡 ∈ ℝ) |
51 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → (𝑥 ∈ ℝ ↔ 𝑡 ∈ ℝ)) |
52 | 51 | anbi2d 740 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (((𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)
∧ 𝑥 ∈ ℝ)
↔ ((𝑓 ∈ dom
∫1 ∧ 𝑔
∈ dom ∫1) ∧ 𝑡 ∈ ℝ))) |
53 | 38 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (((𝑓‘𝑥) + (i · (𝑔‘𝑥))) ∈ ℂ ↔ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ)) |
54 | 52, 53 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → ((((𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)
∧ 𝑥 ∈ ℝ)
→ ((𝑓‘𝑥) + (i · (𝑔‘𝑥))) ∈ ℂ) ↔ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ))) |
55 | 54, 12 | chvarv 2263 |
. . . . . . . . 9
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
56 | 55 | absge0d 14183 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → 0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
57 | 50, 56 | sylan2 491 |
. . . . . . 7
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
58 | | 0le0 11110 |
. . . . . . . 8
⊢ 0 ≤
0 |
59 | 58 | a1i 11 |
. . . . . . 7
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ 0) |
60 | 48, 49, 57, 59 | ifbothda 4123 |
. . . . . 6
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
61 | 60 | ralrimivw 2967 |
. . . . 5
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ∀𝑡 ∈ ℝ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
62 | | ax-resscn 9993 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
63 | 62 | a1i 11 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ℝ ⊆ ℂ) |
64 | | c0ex 10034 |
. . . . . . . . . 10
⊢ 0 ∈
V |
65 | 41, 64 | ifex 4156 |
. . . . . . . . 9
⊢ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V |
66 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
67 | 65, 66 | fnmpti 6022 |
. . . . . . . 8
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) Fn ℝ |
68 | 67 | a1i 11 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) Fn ℝ) |
69 | 63, 68 | 0pledm 23440 |
. . . . . 6
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (0𝑝 ∘𝑟
≤ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ↔ (ℝ × {0})
∘𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) |
70 | 64 | a1i 11 |
. . . . . . 7
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → 0 ∈ V) |
71 | 65 | a1i 11 |
. . . . . . 7
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) |
72 | | fconstmpt 5163 |
. . . . . . . 8
⊢ (ℝ
× {0}) = (𝑡 ∈
ℝ ↦ 0) |
73 | 72 | a1i 11 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (ℝ × {0}) = (𝑡 ∈ ℝ ↦ 0)) |
74 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
75 | 14, 70, 71, 73, 74 | ofrfval2 6915 |
. . . . . 6
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((ℝ × {0}) ∘𝑟
≤ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
76 | 69, 75 | bitrd 268 |
. . . . 5
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (0𝑝 ∘𝑟
≤ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
77 | 61, 76 | mpbird 247 |
. . . 4
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0𝑝 ∘𝑟
≤ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
78 | | itg2itg1 23503 |
. . . . 5
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ dom ∫1 ∧
0𝑝 ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) = (∫1‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) |
79 | | itg1cl 23452 |
. . . . . 6
⊢ ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ dom ∫1 →
(∫1‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
80 | 79 | adantr 481 |
. . . . 5
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ dom ∫1 ∧
0𝑝 ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) →
(∫1‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
81 | 78, 80 | eqeltrd 2701 |
. . . 4
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ dom ∫1 ∧
0𝑝 ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
82 | 47, 77, 81 | syl2anc 693 |
. . 3
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
83 | 82 | ad6antlr 773 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
84 | | simplll 798 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom
∫1))) |
85 | | ftc1anc.a |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈ ℝ) |
86 | 85 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
87 | | ftc1anc.b |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈ ℝ) |
88 | 87 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
89 | 86, 88 | jca 554 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈
ℝ*)) |
90 | | df-icc 12182 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ [,] =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑡 ∈ ℝ* ∣ (𝑥 ≤ 𝑡 ∧ 𝑡 ≤ 𝑦)}) |
91 | 90 | elixx3g 12188 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑢 ∈
ℝ*) ∧ (𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵))) |
92 | 91 | simprbi 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵)) |
93 | 92 | simpld 475 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (𝐴[,]𝐵) → 𝐴 ≤ 𝑢) |
94 | 90 | elixx3g 12188 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) ∧ (𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵))) |
95 | 94 | simprbi 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵)) |
96 | 95 | simprd 479 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ (𝐴[,]𝐵) → 𝑤 ≤ 𝐵) |
97 | 93, 96 | anim12i 590 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → (𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵)) |
98 | | ioossioo 12265 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵)) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵)) |
99 | 89, 97, 98 | syl2an 494 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵)) |
100 | | ftc1anc.s |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
101 | 100 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ 𝐷) |
102 | 99, 101 | sstrd 3613 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ 𝐷) |
103 | 102 | 3adantr3 1222 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (𝑢(,)𝑤) ⊆ 𝐷) |
104 | 103 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡 ∈ 𝐷) |
105 | | ftc1anc.f |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
106 | 105 | ffvelrnda 6359 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
107 | 106 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
108 | 104, 107 | syldan 487 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹‘𝑡) ∈ ℂ) |
109 | 108 | adantllr 755 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹‘𝑡) ∈ ℂ) |
110 | 55 | adantll 750 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
111 | 50, 110 | sylan2 491 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
112 | 111 | adantlr 751 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
113 | 109, 112 | subcld 10392 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
114 | 113 | abscld 14175 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ) |
115 | 114 | rexrd 10089 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
116 | 113 | absge0d 14183 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
117 | | elxrge0 12281 |
. . . . . . . . 9
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞) ↔
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
118 | 115, 116,
117 | sylanbrc 698 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞)) |
119 | | 0e0iccpnf 12283 |
. . . . . . . . 9
⊢ 0 ∈
(0[,]+∞) |
120 | 119 | a1i 11 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
(0[,]+∞)) |
121 | 118, 120 | ifclda 4120 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) |
122 | 121 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) |
123 | | eqid 2622 |
. . . . . 6
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
124 | 122, 123 | fmptd 6385 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))),
0)):ℝ⟶(0[,]+∞)) |
125 | 84, 124 | sylan 488 |
. . . 4
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))),
0)):ℝ⟶(0[,]+∞)) |
126 | | rpre 11839 |
. . . . . 6
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
127 | 126 | rehalfcld 11279 |
. . . . 5
⊢ (𝑦 ∈ ℝ+
→ (𝑦 / 2) ∈
ℝ) |
128 | 127 | ad2antlr 763 |
. . . 4
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (𝑦 / 2) ∈ ℝ) |
129 | | simpll 790 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) → (𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom
∫1))) |
130 | 102 | sselda 3603 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡 ∈ 𝐷) |
131 | 130 | adantllr 755 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡 ∈ 𝐷) |
132 | 106 | adantlr 751 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
133 | | ftc1anc.d |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
134 | 133 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ ℝ) |
135 | 134 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ ℝ) |
136 | 135, 110 | syldan 487 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
137 | 132, 136 | subcld 10392 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
138 | 137 | abscld 14175 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ) |
139 | 138 | rexrd 10089 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
140 | 139 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
141 | 131, 140 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
142 | 137 | absge0d 14183 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
143 | 142 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → 0 ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
144 | 131, 143 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
145 | 141, 144,
117 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞)) |
146 | 119 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
(0[,]+∞)) |
147 | 145, 146 | ifclda 4120 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) |
148 | 147 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) |
149 | 148, 123 | fmptd 6385 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))),
0)):ℝ⟶(0[,]+∞)) |
150 | | itg2cl 23499 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)):ℝ⟶(0[,]+∞)
→ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈
ℝ*) |
151 | 149, 150 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈
ℝ*) |
152 | 129, 151 | sylan 488 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈
ℝ*) |
153 | | 0cnd 10033 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈ ℂ) |
154 | 106, 153 | ifclda 4120 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ) |
155 | | subcl 10280 |
. . . . . . . . . . . . . . . 16
⊢
((if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ ∧ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) → (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
156 | 154, 55, 155 | syl2an 494 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)
∧ 𝑡 ∈ ℝ))
→ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
157 | 156 | anassrs 680 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
158 | 157 | abscld 14175 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ) |
159 | 158 | rexrd 10089 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
160 | 157 | absge0d 14183 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
161 | | elxrge0 12281 |
. . . . . . . . . . . 12
⊢
((abs‘(if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞) ↔
((abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ* ∧ 0 ≤
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
162 | 159, 160,
161 | sylanbrc 698 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞)) |
163 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
164 | 162, 163 | fmptd 6385 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞)) |
165 | | itg2cl 23499 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) ∈
ℝ*) |
166 | 164, 165 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) ∈
ℝ*) |
167 | 166 | ad3antrrr 766 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) ∈
ℝ*) |
168 | | rphalfcl 11858 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ+
→ (𝑦 / 2) ∈
ℝ+) |
169 | 168 | rpxrd 11873 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ+
→ (𝑦 / 2) ∈
ℝ*) |
170 | 169 | ad2antlr 763 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑦 / 2) ∈
ℝ*) |
171 | 164 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞)) |
172 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
173 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → (0 ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
174 | 138 | leidd 10594 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
175 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = (𝐹‘𝑡)) |
176 | 175 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = ((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
177 | 176 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 → (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
178 | 177 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
179 | 174, 178 | breqtrrd 4681 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
180 | 179 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
181 | 131, 180 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
182 | 181 | adantlr 751 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
183 | 160 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
184 | 183 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
185 | 172, 173,
182, 184 | ifbothda 4123 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
186 | 185 | ralrimiva 2966 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
187 | 13 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℝ ∈
V) |
188 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ V |
189 | 188, 64 | ifex 4156 |
. . . . . . . . . . . . . 14
⊢ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈ V |
190 | 189 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈ V) |
191 | | fvexd 6203 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ V) |
192 | | eqidd 2623 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
193 | | eqidd 2623 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
194 | 187, 190,
191, 192, 193 | ofrfval2 6915 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
195 | 194 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
196 | 186, 195 | mpbird 247 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
197 | | itg2le 23506 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)):ℝ⟶(0[,]+∞)
∧ (𝑡 ∈ ℝ
↦ (abs‘(if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))))) |
198 | 149, 171,
196, 197 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))))) |
199 | 129, 198 | sylan 488 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))))) |
200 | | simpllr 799 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) |
201 | 152, 167,
170, 199, 200 | xrlelttrd 11991 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < (𝑦 / 2)) |
202 | | xrltle 11982 |
. . . . . . . 8
⊢
(((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ* ∧
(𝑦 / 2) ∈
ℝ*) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < (𝑦 / 2) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤ (𝑦 / 2))) |
203 | 152, 170,
202 | syl2anc 693 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < (𝑦 / 2) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤ (𝑦 / 2))) |
204 | 201, 203 | mpd 15 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤ (𝑦 / 2)) |
205 | 204 | adantllr 755 |
. . . . 5
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤ (𝑦 / 2)) |
206 | 205 | 3adantr3 1222 |
. . . 4
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤ (𝑦 / 2)) |
207 | | itg2lecl 23505 |
. . . 4
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)):ℝ⟶(0[,]+∞)
∧ (𝑦 / 2) ∈
ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤ (𝑦 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ) |
208 | 125, 128,
206, 207 | syl3anc 1326 |
. . 3
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ) |
209 | 208 | adantr 481 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ) |
210 | 127 | ad3antlr 767 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(𝑦 / 2) ∈
ℝ) |
211 | 82 | adantr 481 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
212 | | 2rp 11837 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
213 | | imassrn 5477 |
. . . . . . . . . . . . . . . 16
⊢ (abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ran
abs |
214 | | frn 6053 |
. . . . . . . . . . . . . . . . 17
⊢
(abs:ℂ⟶ℝ → ran abs ⊆
ℝ) |
215 | 27, 214 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ran abs
⊆ ℝ |
216 | 213, 215 | sstri 3612 |
. . . . . . . . . . . . . . 15
⊢ (abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆
ℝ |
217 | 216 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ) |
218 | | frn 6053 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:ℝ⟶ℝ →
ran 𝑓 ⊆
ℝ) |
219 | 1, 218 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ran 𝑓 ⊆
ℝ) |
220 | 219 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ran 𝑓 ⊆ ℝ) |
221 | | frn 6053 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔:ℝ⟶ℝ →
ran 𝑔 ⊆
ℝ) |
222 | 5, 221 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 ∈ dom ∫1
→ ran 𝑔 ⊆
ℝ) |
223 | 222 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ran 𝑔 ⊆ ℝ) |
224 | 220, 223 | unssd 3789 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (ran 𝑓 ∪ ran 𝑔) ⊆ ℝ) |
225 | 224, 62 | syl6ss 3615 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (ran 𝑓 ∪ ran 𝑔) ⊆ ℂ) |
226 | | i1f0rn 23449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ 0 ∈ ran 𝑓) |
227 | | elun1 3780 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ran 𝑓 → 0 ∈ (ran
𝑓 ∪ ran 𝑔)) |
228 | 226, 227 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ 0 ∈ (ran 𝑓
∪ ran 𝑔)) |
229 | 228 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0 ∈ (ran 𝑓 ∪ ran 𝑔)) |
230 | | ffn 6045 |
. . . . . . . . . . . . . . . . . 18
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) |
231 | 27, 230 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ abs Fn
ℂ |
232 | | fnfvima 6496 |
. . . . . . . . . . . . . . . . 17
⊢ ((abs Fn
ℂ ∧ (ran 𝑓 ∪
ran 𝑔) ⊆ ℂ
∧ 0 ∈ (ran 𝑓 ∪
ran 𝑔)) →
(abs‘0) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
233 | 231, 232 | mp3an1 1411 |
. . . . . . . . . . . . . . . 16
⊢ (((ran
𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ 0 ∈
(ran 𝑓 ∪ ran 𝑔)) → (abs‘0) ∈
(abs “ (ran 𝑓 ∪
ran 𝑔))) |
234 | 225, 229,
233 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs‘0) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
235 | | ne0i 3921 |
. . . . . . . . . . . . . . 15
⊢
((abs‘0) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)) → (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅) |
236 | 234, 235 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅) |
237 | | ffun 6048 |
. . . . . . . . . . . . . . . . 17
⊢
(abs:ℂ⟶ℝ → Fun abs) |
238 | 27, 237 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ Fun
abs |
239 | | i1frn 23444 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ran 𝑓 ∈
Fin) |
240 | | i1frn 23444 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ dom ∫1
→ ran 𝑔 ∈
Fin) |
241 | | unfi 8227 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝑓 ∈ Fin ∧ ran
𝑔 ∈ Fin) → (ran
𝑓 ∪ ran 𝑔) ∈ Fin) |
242 | 239, 240,
241 | syl2an 494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (ran 𝑓 ∪ ran 𝑔) ∈ Fin) |
243 | | imafi 8259 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun abs
∧ (ran 𝑓 ∪ ran
𝑔) ∈ Fin) → (abs
“ (ran 𝑓 ∪ ran
𝑔)) ∈
Fin) |
244 | 238, 242,
243 | sylancr 695 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs “ (ran 𝑓 ∪ ran 𝑔)) ∈ Fin) |
245 | | fimaxre2 10969 |
. . . . . . . . . . . . . . 15
⊢ (((abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ℝ ∧
(abs “ (ran 𝑓 ∪
ran 𝑔)) ∈ Fin) →
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥) |
246 | 216, 244,
245 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))𝑦 ≤ 𝑥) |
247 | | suprcl 10983 |
. . . . . . . . . . . . . 14
⊢ (((abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ℝ ∧
(abs “ (ran 𝑓 ∪
ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ) |
248 | 217, 236,
246, 247 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ) |
249 | 248 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ) |
250 | | 0red 10041 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → 0 ∈
ℝ) |
251 | 225 | sselda 3603 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) → 𝑟 ∈
ℂ) |
252 | 251 | abscld 14175 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) → (abs‘𝑟) ∈
ℝ) |
253 | 252 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → (abs‘𝑟) ∈
ℝ) |
254 | | absgt0 14064 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ ℂ → (𝑟 ≠ 0 ↔ 0 <
(abs‘𝑟))) |
255 | 251, 254 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) → (𝑟 ≠ 0 ↔ 0 <
(abs‘𝑟))) |
256 | 255 | biimpa 501 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) ∧ 𝑟 ≠ 0) → 0 <
(abs‘𝑟)) |
257 | 256 | anasss 679 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → 0 < (abs‘𝑟)) |
258 | 217, 236,
246 | 3jca 1242 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran
𝑓 ∪ ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥)) |
259 | 258 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) → ((abs “
(ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs
“ (ran 𝑓 ∪ ran
𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥)) |
260 | | fnfvima 6496 |
. . . . . . . . . . . . . . . . 17
⊢ ((abs Fn
ℂ ∧ (ran 𝑓 ∪
ran 𝑔) ⊆ ℂ
∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘𝑟) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
261 | 231, 260 | mp3an1 1411 |
. . . . . . . . . . . . . . . 16
⊢ (((ran
𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘𝑟) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
262 | 225, 261 | sylan 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) → (abs‘𝑟) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
263 | | suprub 10984 |
. . . . . . . . . . . . . . 15
⊢ ((((abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ℝ ∧
(abs “ (ran 𝑓 ∪
ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥) ∧ (abs‘𝑟) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) → (abs‘𝑟) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
264 | 259, 262,
263 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑟
∈ (ran 𝑓 ∪ ran
𝑔)) → (abs‘𝑟) ≤ sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
)) |
265 | 264 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → (abs‘𝑟) ≤ sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
)) |
266 | 250, 253,
249, 257, 265 | ltletrd 10197 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → 0 < sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
)) |
267 | 249, 266 | elrpd 11869 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑟
∈ (ran 𝑓 ∪ ran
𝑔) ∧ 𝑟 ≠ 0)) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ+) |
268 | 267 | rexlimdvaa 3032 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0 → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ+)) |
269 | 268 | imp 445 |
. . . . . . . . 9
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ+) |
270 | | rpmulcl 11855 |
. . . . . . . . 9
⊢ ((2
∈ ℝ+ ∧ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ+) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) |
271 | 212, 269,
270 | sylancr 695 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) |
272 | 211, 271 | rerpdivcld 11903 |
. . . . . . 7
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈
ℝ) |
273 | 272 | adantll 750 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈
ℝ) |
274 | 273 | adantlr 751 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈
ℝ) |
275 | 274 | ad3antrrr 766 |
. . . 4
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈
ℝ) |
276 | | simp-4l 806 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → 𝜑) |
277 | | iccssre 12255 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
278 | 85, 87, 277 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
279 | 278, 62 | syl6ss 3615 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
280 | 279 | sselda 3603 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵)) → 𝑤 ∈ ℂ) |
281 | 279 | sselda 3603 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴[,]𝐵)) → 𝑢 ∈ ℂ) |
282 | | subcl 10280 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑤 − 𝑢) ∈ ℂ) |
283 | 280, 281,
282 | syl2anr 495 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ (𝐴[,]𝐵)) ∧ (𝜑 ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑤 − 𝑢) ∈ ℂ) |
284 | 283 | anandis 873 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑤 − 𝑢) ∈ ℂ) |
285 | 284 | abscld 14175 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (abs‘(𝑤 − 𝑢)) ∈ ℝ) |
286 | 285 | 3adantr3 1222 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (abs‘(𝑤 − 𝑢)) ∈ ℝ) |
287 | 276, 286 | sylan 488 |
. . . . 5
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (abs‘(𝑤 − 𝑢)) ∈ ℝ) |
288 | 287 | adantr 481 |
. . . 4
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(abs‘(𝑤 − 𝑢)) ∈
ℝ) |
289 | | rpdivcl 11856 |
. . . . . . . . 9
⊢ (((𝑦 / 2) ∈ ℝ+
∧ (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) → ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈
ℝ+) |
290 | 168, 271,
289 | syl2anr 495 |
. . . . . . . 8
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < )))
∈ ℝ+) |
291 | 290 | rpred 11872 |
. . . . . . 7
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < )))
∈ ℝ) |
292 | 291 | adantlll 754 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < )))
∈ ℝ) |
293 | 292 | adantllr 755 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < )))
∈ ℝ) |
294 | 293 | ad2antrr 762 |
. . . 4
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((𝑦 / 2) / (2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< ))) ∈ ℝ) |
295 | 278 | sseld 3602 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ∈ (𝐴[,]𝐵) → 𝑢 ∈ ℝ)) |
296 | 278 | sseld 3602 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑤 ∈ (𝐴[,]𝐵) → 𝑤 ∈ ℝ)) |
297 | | idd 24 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ≤ 𝑤 → 𝑢 ≤ 𝑤)) |
298 | 295, 296,
297 | 3anim123d 1406 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤) → (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤))) |
299 | 298 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤) → (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤))) |
300 | 299 | imp 445 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) |
301 | 55 | abscld 14175 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ) |
302 | 301 | rexrd 10089 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈
ℝ*) |
303 | | elxrge0 12281 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ↔
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
304 | 302, 56, 303 | sylanbrc 698 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞)) |
305 | | ifcl 4130 |
. . . . . . . . . . . . . . . . 17
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) |
306 | 304, 119,
305 | sylancl 694 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) |
307 | 306, 66 | fmptd 6385 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) |
308 | 248 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℂ) |
309 | 308 | 2timesd 11275 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) = (sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, <
))) |
310 | 248, 248 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ) |
311 | 310 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ*) |
312 | | abs0 14025 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(abs‘0) = 0 |
313 | 312, 234 | syl5eqelr 2706 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
314 | | suprub 10984 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ℝ ∧
(abs “ (ran 𝑓 ∪
ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥) ∧ 0 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) → 0 ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
315 | 258, 313,
314 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0 ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
316 | 248, 248,
315, 315 | addge0d 10603 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0 ≤ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
))) |
317 | | elxrge0 12281 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
(0[,]+∞) ↔ ((sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ* ∧ 0 ≤ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
)))) |
318 | 311, 316,
317 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
(0[,]+∞)) |
319 | 309, 318 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
(0[,]+∞)) |
320 | | ifcl 4130 |
. . . . . . . . . . . . . . . . . 18
⊢ (((2
· sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ (0[,]+∞)
∧ 0 ∈ (0[,]+∞)) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈
(0[,]+∞)) |
321 | 319, 119,
320 | sylancl 694 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈
(0[,]+∞)) |
322 | 321 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈
(0[,]+∞)) |
323 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) |
324 | 322, 323 | fmptd 6385 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )),
0)):ℝ⟶(0[,]+∞)) |
325 | 1 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℝ) |
326 | 325 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℂ) |
327 | 326 | abscld 14175 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑓‘𝑡)) ∈ ℝ) |
328 | 5 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℝ) |
329 | 328 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℂ) |
330 | 329 | abscld 14175 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ ℝ) |
331 | | readdcl 10019 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((abs‘(𝑓‘𝑡)) ∈ ℝ ∧ (abs‘(𝑔‘𝑡)) ∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) |
332 | 327, 330,
331 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) |
333 | 332 | anandirs 874 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) |
334 | 310 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ) |
335 | | mulcl 10020 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (i · (𝑔‘𝑡)) ∈ ℂ) |
336 | 4, 329, 335 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (i · (𝑔‘𝑡)) ∈ ℂ) |
337 | | abstri 14070 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) |
338 | 326, 336,
337 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) |
339 | 338 | anandirs 874 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) |
340 | | absmul 14034 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (abs‘(i
· (𝑔‘𝑡))) = ((abs‘i) ·
(abs‘(𝑔‘𝑡)))) |
341 | 4, 329, 340 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = ((abs‘i) ·
(abs‘(𝑔‘𝑡)))) |
342 | | absi 14026 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(abs‘i) = 1 |
343 | 342 | oveq1i 6660 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((abs‘i) · (abs‘(𝑔‘𝑡))) = (1 · (abs‘(𝑔‘𝑡))) |
344 | 341, 343 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = (1 · (abs‘(𝑔‘𝑡)))) |
345 | 330 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ ℂ) |
346 | 345 | mulid2d 10058 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (1 · (abs‘(𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) |
347 | 344, 346 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) |
348 | 347 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(i · (𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) |
349 | 348 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡)))) = ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
350 | 339, 349 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
351 | 327 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(𝑓‘𝑡)) ∈ ℝ) |
352 | 330 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(𝑔‘𝑡)) ∈ ℝ) |
353 | 248 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
ℝ) |
354 | 258 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran
𝑓 ∪ ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥)) |
355 | 225 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (ran 𝑓 ∪ ran 𝑔) ⊆ ℂ) |
356 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓:ℝ⟶ℝ →
𝑓 Fn
ℝ) |
357 | 1, 356 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 Fn
ℝ) |
358 | | fnfvelrn 6356 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓 Fn ℝ ∧ 𝑡 ∈ ℝ) → (𝑓‘𝑡) ∈ ran 𝑓) |
359 | 357, 358 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈ ran 𝑓) |
360 | | elun1 3780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓‘𝑡) ∈ ran 𝑓 → (𝑓‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) |
361 | 359, 360 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) |
362 | 361 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (𝑓‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) |
363 | | fnfvima 6496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((abs Fn
ℂ ∧ (ran 𝑓 ∪
ran 𝑔) ⊆ ℂ
∧ (𝑓‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘(𝑓‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
364 | 231, 363 | mp3an1 1411 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((ran
𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ (𝑓‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘(𝑓‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
365 | 355, 362,
364 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(𝑓‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
366 | | suprub 10984 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ℝ ∧
(abs “ (ran 𝑓 ∪
ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥) ∧ (abs‘(𝑓‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) → (abs‘(𝑓‘𝑡)) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
367 | 354, 365,
366 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(𝑓‘𝑡)) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
368 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑔:ℝ⟶ℝ →
𝑔 Fn
ℝ) |
369 | 5, 368 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑔 ∈ dom ∫1
→ 𝑔 Fn
ℝ) |
370 | | fnfvelrn 6356 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑔 Fn ℝ ∧ 𝑡 ∈ ℝ) → (𝑔‘𝑡) ∈ ran 𝑔) |
371 | 369, 370 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈ ran 𝑔) |
372 | | elun2 3781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔‘𝑡) ∈ ran 𝑔 → (𝑔‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) |
373 | 371, 372 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) |
374 | 373 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (𝑔‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) |
375 | | fnfvima 6496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((abs Fn
ℂ ∧ (ran 𝑓 ∪
ran 𝑔) ⊆ ℂ
∧ (𝑔‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘(𝑔‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
376 | 231, 375 | mp3an1 1411 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((ran
𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ (𝑔‘𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘(𝑔‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
377 | 355, 374,
376 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(𝑔‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) |
378 | | suprub 10984 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((abs
“ (ran 𝑓 ∪ ran
𝑔)) ⊆ ℝ ∧
(abs “ (ran 𝑓 ∪
ran 𝑔)) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ (abs
“ (ran 𝑓 ∪ ran
𝑔))𝑦 ≤ 𝑥) ∧ (abs‘(𝑔‘𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) → (abs‘(𝑔‘𝑡)) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
379 | 354, 377,
378 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(𝑔‘𝑡)) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) |
380 | 351, 352,
353, 353, 367, 379 | le2addd 10646 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ≤ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
))) |
381 | 301, 333,
334, 350, 380 | letrd 10194 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
))) |
382 | 309 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) = (sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, <
))) |
383 | 381, 382 | breqtrrd 4681 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
))) |
384 | 50, 383 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
))) |
385 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
386 | 385 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
387 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) = (2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< ))) |
388 | 387 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) = (2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< ))) |
389 | 384, 386,
388 | 3brtr4d 4685 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) |
390 | 389 | ex 450 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) |
391 | 58 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → 0 ≤ 0) |
392 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) |
393 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) =
0) |
394 | 391, 392,
393 | 3brtr4d 4685 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) |
395 | 390, 394 | pm2.61d1 171 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) |
396 | 395 | ralrimivw 2967 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) |
397 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2
· sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
V |
398 | 397, 64 | ifex 4156 |
. . . . . . . . . . . . . . . . . 18
⊢ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈
V |
399 | 398 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈
V) |
400 | | eqidd 2623 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) |
401 | 14, 71, 399, 74, 400 | ofrfval2 6915 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) ↔
∀𝑡 ∈ ℝ
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) |
402 | 396, 401 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) |
403 | | itg2le 23506 |
. . . . . . . . . . . . . . 15
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )),
0)):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )),
0)))) |
404 | 307, 324,
402, 403 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )),
0)))) |
405 | 404 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑢
∈ ℝ ∧ 𝑤
∈ ℝ ∧ 𝑢 ≤
𝑤)) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )),
0)))) |
406 | | mblvol 23298 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢(,)𝑤) ∈ dom vol → (vol‘(𝑢(,)𝑤)) = (vol*‘(𝑢(,)𝑤))) |
407 | 34, 406 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(vol‘(𝑢(,)𝑤)) = (vol*‘(𝑢(,)𝑤)) |
408 | | ovolioo 23336 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (vol*‘(𝑢(,)𝑤)) = (𝑤 − 𝑢)) |
409 | 407, 408 | syl5eq 2668 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (vol‘(𝑢(,)𝑤)) = (𝑤 − 𝑢)) |
410 | | resubcl 10345 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑤 − 𝑢) ∈ ℝ) |
411 | 410 | ancoms 469 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑤 − 𝑢) ∈ ℝ) |
412 | 411 | 3adant3 1081 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (𝑤 − 𝑢) ∈ ℝ) |
413 | 409, 412 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (vol‘(𝑢(,)𝑤)) ∈ ℝ) |
414 | | elrege0 12278 |
. . . . . . . . . . . . . . . . 17
⊢ (sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < ) ∈
(0[,)+∞) ↔ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ ℝ ∧ 0
≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) |
415 | 248, 315,
414 | sylanbrc 698 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈
(0[,)+∞)) |
416 | | ge0addcl 12284 |
. . . . . . . . . . . . . . . 16
⊢
((sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ (0[,)+∞)
∧ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ (0[,)+∞))
→ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
(0[,)+∞)) |
417 | 415, 415,
416 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
(0[,)+∞)) |
418 | 309, 417 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
(0[,)+∞)) |
419 | | itg2const 23507 |
. . . . . . . . . . . . . . 15
⊢ (((𝑢(,)𝑤) ∈ dom vol ∧ (vol‘(𝑢(,)𝑤)) ∈ ℝ ∧ (2 · sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < ))
∈ (0[,)+∞)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) = ((2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< )) · (vol‘(𝑢(,)𝑤)))) |
420 | 34, 419 | mp3an1 1411 |
. . . . . . . . . . . . . 14
⊢
(((vol‘(𝑢(,)𝑤)) ∈ ℝ ∧ (2 · sup((abs
“ (ran 𝑓 ∪ ran
𝑔)), ℝ, < ))
∈ (0[,)+∞)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) = ((2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< )) · (vol‘(𝑢(,)𝑤)))) |
421 | 413, 418,
420 | syl2anr 495 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑢
∈ ℝ ∧ 𝑤
∈ ℝ ∧ 𝑢 ≤
𝑤)) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) = ((2
· sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ·
(vol‘(𝑢(,)𝑤)))) |
422 | 405, 421 | breqtrd 4679 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ (𝑢
∈ ℝ ∧ 𝑤
∈ ℝ ∧ 𝑢 ≤
𝑤)) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤ ((2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ·
(vol‘(𝑢(,)𝑤)))) |
423 | 422 | adantll 750 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ ℝ
∧ 𝑤 ∈ ℝ
∧ 𝑢 ≤ 𝑤)) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤ ((2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ·
(vol‘(𝑢(,)𝑤)))) |
424 | 423 | adantlr 751 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤ ((2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ·
(vol‘(𝑢(,)𝑤)))) |
425 | 82 | ad3antlr 767 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
426 | 413 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → (vol‘(𝑢(,)𝑤)) ∈ ℝ) |
427 | 271 | adantll 750 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) |
428 | 427 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) |
429 | 425, 426,
428 | ledivmuld 11925 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → (((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(vol‘(𝑢(,)𝑤)) ↔
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤ ((2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ·
(vol‘(𝑢(,)𝑤))))) |
430 | 424, 429 | mpbird 247 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(vol‘(𝑢(,)𝑤))) |
431 | | abssubge0 14067 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (abs‘(𝑤 − 𝑢)) = (𝑤 − 𝑢)) |
432 | 408, 431 | eqtr4d 2659 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (vol*‘(𝑢(,)𝑤)) = (abs‘(𝑤 − 𝑢))) |
433 | 407, 432 | syl5eq 2668 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤) → (vol‘(𝑢(,)𝑤)) = (abs‘(𝑤 − 𝑢))) |
434 | 433 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → (vol‘(𝑢(,)𝑤)) = (abs‘(𝑤 − 𝑢))) |
435 | 430, 434 | breqtrd 4679 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(abs‘(𝑤 − 𝑢))) |
436 | 300, 435 | syldan 487 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ∃𝑟 ∈ (ran
𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(abs‘(𝑤 − 𝑢))) |
437 | 436 | adantllr 755 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(abs‘(𝑤 − 𝑢))) |
438 | 437 | adantlr 751 |
. . . . 5
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(abs‘(𝑤 − 𝑢))) |
439 | 438 | adantr 481 |
. . . 4
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤
(abs‘(𝑤 − 𝑢))) |
440 | | simpr 477 |
. . . 4
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, <
)))) |
441 | 275, 288,
294, 439, 440 | lelttrd 10195 |
. . 3
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) <
((𝑦 / 2) / (2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< )))) |
442 | 82 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
443 | 442 | ad3antrrr 766 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
444 | 127 | adantl 482 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈
ℝ) |
445 | 427 | adantlr 751 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) |
446 | 445 | adantr 481 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (2
· sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈
ℝ+) |
447 | 443, 444,
446 | ltdiv1d 11917 |
. . . 4
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) < (𝑦 / 2) ↔ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) <
((𝑦 / 2) / (2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< ))))) |
448 | 447 | ad2antrr 762 |
. . 3
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) < (𝑦 / 2) ↔ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) / (2 · sup((abs “
(ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) <
((𝑦 / 2) / (2 ·
sup((abs “ (ran 𝑓
∪ ran 𝑔)), ℝ,
< ))))) |
449 | 441, 448 | mpbird 247 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) < (𝑦 / 2)) |
450 | 201 | adantllr 755 |
. . . 4
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < (𝑦 / 2)) |
451 | 450 | 3adantr3 1222 |
. . 3
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < (𝑦 / 2)) |
452 | 451 | adantr 481 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < (𝑦 / 2)) |
453 | 83, 209, 210, 210, 449, 452 | lt2addd 10650 |
1
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) < ((𝑦 / 2) + (𝑦 / 2))) |