| Step | Hyp | Ref
| Expression |
| 1 | | cply1mul.p |
. . . . . . . . . 10
⊢ 𝑃 = (Poly1‘𝑅) |
| 2 | | cply1mul.m |
. . . . . . . . . 10
⊢ × =
(.r‘𝑃) |
| 3 | | eqid 2622 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 4 | | cply1mul.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑃) |
| 5 | 1, 2, 3, 4 | coe1mul 19640 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))))) |
| 6 | 5 | 3expb 1266 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (coe1‘(𝐹 × 𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))))) |
| 7 | 6 | adantr 481 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) →
(coe1‘(𝐹
×
𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))))) |
| 8 | 7 | adantr 481 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) →
(coe1‘(𝐹
×
𝐺)) = (𝑠 ∈ ℕ0 ↦ (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))))) |
| 9 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑠 = 𝑛 → (0...𝑠) = (0...𝑛)) |
| 10 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑛 → (𝑠 − 𝑘) = (𝑛 − 𝑘)) |
| 11 | 10 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑛 → ((coe1‘𝐺)‘(𝑠 − 𝑘)) = ((coe1‘𝐺)‘(𝑛 − 𝑘))) |
| 12 | 11 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑠 = 𝑛 → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))) = (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))) |
| 13 | 9, 12 | mpteq12dv 4733 |
. . . . . . . 8
⊢ (𝑠 = 𝑛 → (𝑘 ∈ (0...𝑠) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))))) |
| 14 | 13 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑠 = 𝑛 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))))) |
| 15 | 14 | adantl 482 |
. . . . . 6
⊢
(((((𝑅 ∈ Ring
∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 = 𝑛) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑠 − 𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))))) |
| 16 | | nnnn0 11299 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 17 | 16 | adantl 482 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
ℕ0) |
| 18 | | ovexd 6680 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))))) ∈ V) |
| 19 | 8, 15, 17, 18 | fvmptd 6288 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) →
((coe1‘(𝐹
×
𝐺))‘𝑛) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))))) |
| 20 | | r19.26 3064 |
. . . . . . . . . 10
⊢
(∀𝑐 ∈
ℕ (((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 ) ↔ (∀𝑐 ∈ ℕ
((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 )) |
| 21 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (𝑛 − 𝑘) = (𝑛 − 0)) |
| 22 | | nncn 11028 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
| 23 | 22 | subid1d 10381 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → (𝑛 − 0) = 𝑛) |
| 24 | 23 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (𝑛 − 0) = 𝑛) |
| 25 | 21, 24 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (𝑛 − 𝑘) = 𝑛) |
| 26 | | simpll 790 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → 𝑛 ∈ ℕ) |
| 27 | 25, 26 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (𝑛 − 𝑘) ∈ ℕ) |
| 28 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = (𝑛 − 𝑘) → ((coe1‘𝐺)‘𝑐) = ((coe1‘𝐺)‘(𝑛 − 𝑘))) |
| 29 | 28 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = (𝑛 − 𝑘) → (((coe1‘𝐺)‘𝑐) = 0 ↔
((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 )) |
| 30 | 29 | rspcv 3305 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 − 𝑘) ∈ ℕ → (∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 →
((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 )) |
| 31 | 27, 30 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (∀𝑐 ∈ ℕ ((coe1‘𝐺)‘𝑐) = 0 →
((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 )) |
| 32 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = (((coe1‘𝐹)‘𝑘)(.r‘𝑅) 0 )) |
| 33 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → 𝑅 ∈ Ring) |
| 34 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐵) |
| 35 | 34 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐹 ∈ 𝐵) |
| 36 | | elfznn0 12433 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
| 37 | 36 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) |
| 38 | 37 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → 𝑘 ∈ ℕ0) |
| 39 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(coe1‘𝐹) = (coe1‘𝐹) |
| 40 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 41 | 39, 4, 1, 40 | coe1fvalcl 19582 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝐹)‘𝑘) ∈ (Base‘𝑅)) |
| 42 | 35, 38, 41 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → ((coe1‘𝐹)‘𝑘) ∈ (Base‘𝑅)) |
| 43 | | cply1mul.0 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 =
(0g‘𝑅) |
| 44 | 40, 3, 43 | ringrz 18588 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐹)‘𝑘) ∈ (Base‘𝑅)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅) 0 ) = 0 ) |
| 45 | 33, 42, 44 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅) 0 ) = 0 ) |
| 46 | 32, 45 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) ∧ ((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 ) →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
| 47 | 46 | ex 450 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0)) → (((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )) |
| 48 | 47 | expcom 451 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
| 49 | 48 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → (((coe1‘𝐺)‘(𝑛 − 𝑘)) = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
| 50 | 31, 49 | syldc 48 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑐 ∈
ℕ ((coe1‘𝐺)‘𝑐) = 0 → (((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑘 = 0) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
| 51 | 50 | expd 452 |
. . . . . . . . . . . . . 14
⊢
(∀𝑐 ∈
ℕ ((coe1‘𝐺)‘𝑐) = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 52 | 51 | com24 95 |
. . . . . . . . . . . . 13
⊢
(∀𝑐 ∈
ℕ ((coe1‘𝐺)‘𝑐) = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 53 | 52 | adantl 482 |
. . . . . . . . . . . 12
⊢
((∀𝑐 ∈
ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 54 | 53 | com13 88 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 55 | | df-ne 2795 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ≠ 0 ↔ ¬ 𝑘 = 0) |
| 56 | 55 | biimpri 218 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑘 = 0 → 𝑘 ≠ 0) |
| 57 | 56, 36 | anim12ci 591 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 ∈ ℕ0 ∧ 𝑘 ≠ 0)) |
| 58 | | elnnne0 11306 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℕ0
∧ 𝑘 ≠
0)) |
| 59 | 57, 58 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ) |
| 60 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 = 𝑘 → ((coe1‘𝐹)‘𝑐) = ((coe1‘𝐹)‘𝑘)) |
| 61 | 60 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑘 → (((coe1‘𝐹)‘𝑐) = 0 ↔
((coe1‘𝐹)‘𝑘) = 0 )) |
| 62 | 61 | rspcv 3305 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ →
(∀𝑐 ∈ ℕ
((coe1‘𝐹)‘𝑐) = 0 →
((coe1‘𝐹)‘𝑘) = 0 )) |
| 63 | 59, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 →
((coe1‘𝐹)‘𝑘) = 0 )) |
| 64 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((coe1‘𝐹)‘𝑘) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = ( 0 (.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))) |
| 65 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → 𝑅 ∈ Ring) |
| 66 | 4 | eleq2i 2693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐺 ∈ 𝐵 ↔ 𝐺 ∈ (Base‘𝑃)) |
| 67 | 66 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐺 ∈ 𝐵 → 𝐺 ∈ (Base‘𝑃)) |
| 68 | 67 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ (Base‘𝑃)) |
| 69 | 68 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐺 ∈ (Base‘𝑃)) |
| 70 | | fznn0sub 12373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ (0...𝑛) → (𝑛 − 𝑘) ∈
ℕ0) |
| 71 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(coe1‘𝐺) = (coe1‘𝐺) |
| 72 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 73 | 71, 72, 1, 40 | coe1fvalcl 19582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐺 ∈ (Base‘𝑃) ∧ (𝑛 − 𝑘) ∈ ℕ0) →
((coe1‘𝐺)‘(𝑛 − 𝑘)) ∈ (Base‘𝑅)) |
| 74 | 69, 70, 73 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → ((coe1‘𝐺)‘(𝑛 − 𝑘)) ∈ (Base‘𝑅)) |
| 75 | 40, 3, 43 | ringlz 18587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐺)‘(𝑛 − 𝑘)) ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
| 76 | 65, 74, 75 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → ( 0 (.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
| 77 | 64, 76 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) ∧ ((coe1‘𝐹)‘𝑘) = 0 ) →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
| 78 | 77 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )) |
| 79 | 78 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑘 ∈ (0...𝑛) → (((coe1‘𝐹)‘𝑘) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
| 80 | 79 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘) = 0 → (𝑘 ∈ (0...𝑛) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
| 81 | 80 | a1dd 50 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → (𝑘 ∈ (0...𝑛) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 82 | 81 | com14 96 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...𝑛) → (((coe1‘𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 83 | 82 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 84 | 63, 83 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → (∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 → (𝑛 ∈ ℕ → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 85 | 84 | com24 95 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
𝑘 = 0 ∧ 𝑘 ∈ (0...𝑛)) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑛 ∈ ℕ → (∀𝑐 ∈ ℕ
((coe1‘𝐹)‘𝑐) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 86 | 85 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑘 = 0 → (𝑘 ∈ (0...𝑛) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑛 ∈ ℕ → (∀𝑐 ∈ ℕ
((coe1‘𝐹)‘𝑐) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))))) |
| 87 | 86 | com14 96 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑘 ∈ (0...𝑛) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (¬ 𝑘 = 0 → (∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))))) |
| 88 | 87 | imp 445 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (¬ 𝑘 = 0 → (∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 →
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 89 | 88 | com14 96 |
. . . . . . . . . . . . 13
⊢
(∀𝑐 ∈
ℕ ((coe1‘𝐹)‘𝑐) = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (¬ 𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 90 | 89 | adantr 481 |
. . . . . . . . . . . 12
⊢
((∀𝑐 ∈
ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (¬ 𝑘 = 0 → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 91 | 90 | com13 88 |
. . . . . . . . . . 11
⊢ (¬
𝑘 = 0 → ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )))) |
| 92 | 54, 91 | pm2.61i 176 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((∀𝑐 ∈ ℕ ((coe1‘𝐹)‘𝑐) = 0 ∧ ∀𝑐 ∈ ℕ
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
| 93 | 20, 92 | syl5bi 232 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 ) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ))) |
| 94 | 93 | imp 445 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) → ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 )) |
| 95 | 94 | impl 650 |
. . . . . . 7
⊢
(((((𝑅 ∈ Ring
∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑛)) → (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))) = 0 ) |
| 96 | 95 | mpteq2dva 4744 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (0...𝑛) ↦ (((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ 0 )) |
| 97 | 96 | oveq2d 6666 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦
(((coe1‘𝐹)‘𝑘)(.r‘𝑅)((coe1‘𝐺)‘(𝑛 − 𝑘))))) = (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 ))) |
| 98 | | ringmnd 18556 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 99 | | ovexd 6680 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → (0...𝑛) ∈ V) |
| 100 | 43 | gsumz 17374 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Mnd ∧ (0...𝑛) ∈ V) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
| 101 | 98, 99, 100 | syl2anc 693 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
| 102 | 101 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑅 Σg (𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
| 103 | 102 | adantr 481 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
| 104 | 103 | adantr 481 |
. . . . 5
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) → (𝑅 Σg
(𝑘 ∈ (0...𝑛) ↦ 0 )) = 0 ) |
| 105 | 19, 97, 104 | 3eqtrd 2660 |
. . . 4
⊢ ((((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) ∧ 𝑛 ∈ ℕ) →
((coe1‘(𝐹
×
𝐺))‘𝑛) = 0 ) |
| 106 | 105 | ralrimiva 2966 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) → ∀𝑛 ∈ ℕ
((coe1‘(𝐹
×
𝐺))‘𝑛) = 0 ) |
| 107 | | fveq2 6191 |
. . . . 5
⊢ (𝑐 = 𝑛 → ((coe1‘(𝐹 × 𝐺))‘𝑐) = ((coe1‘(𝐹 × 𝐺))‘𝑛)) |
| 108 | 107 | eqeq1d 2624 |
. . . 4
⊢ (𝑐 = 𝑛 → (((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ↔
((coe1‘(𝐹
×
𝐺))‘𝑛) = 0 )) |
| 109 | 108 | cbvralv 3171 |
. . 3
⊢
(∀𝑐 ∈
ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 ↔ ∀𝑛 ∈ ℕ
((coe1‘(𝐹
×
𝐺))‘𝑛) = 0 ) |
| 110 | 106, 109 | sylibr 224 |
. 2
⊢ (((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ ∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 )) → ∀𝑐 ∈ ℕ
((coe1‘(𝐹
×
𝐺))‘𝑐) = 0 ) |
| 111 | 110 | ex 450 |
1
⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (∀𝑐 ∈ ℕ
(((coe1‘𝐹)‘𝑐) = 0 ∧
((coe1‘𝐺)‘𝑐) = 0 ) → ∀𝑐 ∈ ℕ
((coe1‘(𝐹
×
𝐺))‘𝑐) = 0 )) |