Step | Hyp | Ref
| Expression |
1 | | fvexd 6203 |
. . . 4
⊢ (𝑧 = 〈𝑝, 𝑘〉 → (↑‘𝑧) ∈ V) |
2 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑝, 𝑘〉 → (↑‘𝑧) = (↑‘〈𝑝, 𝑘〉)) |
3 | | df-ov 6653 |
. . . . . . . 8
⊢ (𝑝↑𝑘) = (↑‘〈𝑝, 𝑘〉) |
4 | 2, 3 | syl6eqr 2674 |
. . . . . . 7
⊢ (𝑧 = 〈𝑝, 𝑘〉 → (↑‘𝑧) = (𝑝↑𝑘)) |
5 | 4 | eqeq2d 2632 |
. . . . . 6
⊢ (𝑧 = 〈𝑝, 𝑘〉 → (𝑥 = (↑‘𝑧) ↔ 𝑥 = (𝑝↑𝑘))) |
6 | 5 | biimpa 501 |
. . . . 5
⊢ ((𝑧 = 〈𝑝, 𝑘〉 ∧ 𝑥 = (↑‘𝑧)) → 𝑥 = (𝑝↑𝑘)) |
7 | | fsumvma.1 |
. . . . 5
⊢ (𝑥 = (𝑝↑𝑘) → 𝐵 = 𝐶) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ ((𝑧 = 〈𝑝, 𝑘〉 ∧ 𝑥 = (↑‘𝑧)) → 𝐵 = 𝐶) |
9 | 1, 8 | csbied 3560 |
. . 3
⊢ (𝑧 = 〈𝑝, 𝑘〉 →
⦋(↑‘𝑧) / 𝑥⦌𝐵 = 𝐶) |
10 | | fsumvma.4 |
. . 3
⊢ (𝜑 → 𝑃 ∈ Fin) |
11 | | fsumvma.2 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ Fin) |
12 | 11 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐴 ∈ Fin) |
13 | | fsumvma.5 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝↑𝑘) ∈ 𝐴))) |
14 | 13 | biimpd 219 |
. . . . . . . 8
⊢ (𝜑 → ((𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝↑𝑘) ∈ 𝐴))) |
15 | 14 | impl 650 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑘 ∈ 𝐾) → ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝↑𝑘) ∈ 𝐴)) |
16 | 15 | simprd 479 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑘 ∈ 𝐾) → (𝑝↑𝑘) ∈ 𝐴) |
17 | 16 | ex 450 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (𝑘 ∈ 𝐾 → (𝑝↑𝑘) ∈ 𝐴)) |
18 | 15 | simpld 475 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑘 ∈ 𝐾) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) |
19 | 18 | simpld 475 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑘 ∈ 𝐾) → 𝑝 ∈ ℙ) |
20 | 19 | adantrr 753 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → 𝑝 ∈ ℙ) |
21 | 18 | simprd 479 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑘 ∈ 𝐾) → 𝑘 ∈ ℕ) |
22 | 21 | adantrr 753 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → 𝑘 ∈ ℕ) |
23 | 21 | ex 450 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (𝑘 ∈ 𝐾 → 𝑘 ∈ ℕ)) |
24 | 23 | ssrdv 3609 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐾 ⊆ ℕ) |
25 | 24 | sselda 3603 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑧 ∈ 𝐾) → 𝑧 ∈ ℕ) |
26 | 25 | adantrl 752 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → 𝑧 ∈ ℕ) |
27 | | eqid 2622 |
. . . . . . . 8
⊢ 𝑝 = 𝑝 |
28 | | prmexpb 15430 |
. . . . . . . . 9
⊢ (((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑝↑𝑘) = (𝑝↑𝑧) ↔ (𝑝 = 𝑝 ∧ 𝑘 = 𝑧))) |
29 | 28 | baibd 948 |
. . . . . . . 8
⊢ ((((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) ∧ 𝑝 = 𝑝) → ((𝑝↑𝑘) = (𝑝↑𝑧) ↔ 𝑘 = 𝑧)) |
30 | 27, 29 | mpan2 707 |
. . . . . . 7
⊢ (((𝑝 ∈ ℙ ∧ 𝑝 ∈ ℙ) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑝↑𝑘) = (𝑝↑𝑧) ↔ 𝑘 = 𝑧)) |
31 | 20, 20, 22, 26, 30 | syl22anc 1327 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑝↑𝑘) = (𝑝↑𝑧) ↔ 𝑘 = 𝑧)) |
32 | 31 | ex 450 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → ((𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) → ((𝑝↑𝑘) = (𝑝↑𝑧) ↔ 𝑘 = 𝑧))) |
33 | 17, 32 | dom2lem 7995 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (𝑘 ∈ 𝐾 ↦ (𝑝↑𝑘)):𝐾–1-1→𝐴) |
34 | | f1fi 8253 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝑘 ∈ 𝐾 ↦ (𝑝↑𝑘)):𝐾–1-1→𝐴) → 𝐾 ∈ Fin) |
35 | 12, 33, 34 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐾 ∈ Fin) |
36 | 13 | simplbda 654 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾)) → (𝑝↑𝑘) ∈ 𝐴) |
37 | | fsumvma.6 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
38 | 37 | ralrimiva 2966 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ) |
39 | 38 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾)) → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ) |
40 | 7 | eleq1d 2686 |
. . . . 5
⊢ (𝑥 = (𝑝↑𝑘) → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
41 | 40 | rspcv 3305 |
. . . 4
⊢ ((𝑝↑𝑘) ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ → 𝐶 ∈ ℂ)) |
42 | 36, 39, 41 | sylc 65 |
. . 3
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾)) → 𝐶 ∈ ℂ) |
43 | 9, 10, 35, 42 | fsum2d 14502 |
. 2
⊢ (𝜑 → Σ𝑝 ∈ 𝑃 Σ𝑘 ∈ 𝐾 𝐶 = Σ𝑧 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾)⦋(↑‘𝑧) / 𝑥⦌𝐵) |
44 | | nfcv 2764 |
. . . 4
⊢
Ⅎ𝑦𝐵 |
45 | | nfcsb1v 3549 |
. . . 4
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
46 | | csbeq1a 3542 |
. . . 4
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
47 | 44, 45, 46 | cbvsumi 14427 |
. . 3
⊢
Σ𝑥 ∈ ran
(𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑦 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))⦋𝑦 / 𝑥⦌𝐵 |
48 | | csbeq1 3536 |
. . . 4
⊢ (𝑦 = (↑‘𝑧) → ⦋𝑦 / 𝑥⦌𝐵 = ⦋(↑‘𝑧) / 𝑥⦌𝐵) |
49 | | snfi 8038 |
. . . . . . 7
⊢ {𝑝} ∈ Fin |
50 | | xpfi 8231 |
. . . . . . 7
⊢ (({𝑝} ∈ Fin ∧ 𝐾 ∈ Fin) → ({𝑝} × 𝐾) ∈ Fin) |
51 | 49, 35, 50 | sylancr 695 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → ({𝑝} × 𝐾) ∈ Fin) |
52 | 51 | ralrimiva 2966 |
. . . . 5
⊢ (𝜑 → ∀𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ∈ Fin) |
53 | | iunfi 8254 |
. . . . 5
⊢ ((𝑃 ∈ Fin ∧ ∀𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ∈ Fin) → ∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ∈ Fin) |
54 | 10, 52, 53 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ∈ Fin) |
55 | | fvex 6201 |
. . . . . . 7
⊢
(↑‘𝑎)
∈ V |
56 | 55 | 2a1i 12 |
. . . . . 6
⊢ (𝜑 → (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) → (↑‘𝑎) ∈ V)) |
57 | | eliunxp 5259 |
. . . . . . . . 9
⊢ (𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↔ ∃𝑝∃𝑘(𝑎 = 〈𝑝, 𝑘〉 ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾))) |
58 | 13 | simprbda 653 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾)) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) |
59 | | opelxp 5146 |
. . . . . . . . . . . . . 14
⊢
(〈𝑝, 𝑘〉 ∈ (ℙ ×
ℕ) ↔ (𝑝 ∈
ℙ ∧ 𝑘 ∈
ℕ)) |
60 | 58, 59 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾)) → 〈𝑝, 𝑘〉 ∈ (ℙ ×
ℕ)) |
61 | | eleq1 2689 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 〈𝑝, 𝑘〉 → (𝑎 ∈ (ℙ × ℕ) ↔
〈𝑝, 𝑘〉 ∈ (ℙ ×
ℕ))) |
62 | 60, 61 | syl5ibrcom 237 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾)) → (𝑎 = 〈𝑝, 𝑘〉 → 𝑎 ∈ (ℙ ×
ℕ))) |
63 | 62 | impancom 456 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 = 〈𝑝, 𝑘〉) → ((𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾) → 𝑎 ∈ (ℙ ×
ℕ))) |
64 | 63 | expimpd 629 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑎 = 〈𝑝, 𝑘〉 ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾)) → 𝑎 ∈ (ℙ ×
ℕ))) |
65 | 64 | exlimdvv 1862 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑝∃𝑘(𝑎 = 〈𝑝, 𝑘〉 ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾)) → 𝑎 ∈ (ℙ ×
ℕ))) |
66 | 57, 65 | syl5bi 232 |
. . . . . . . 8
⊢ (𝜑 → (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) → 𝑎 ∈ (ℙ ×
ℕ))) |
67 | 66 | ssrdv 3609 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ⊆ (ℙ ×
ℕ)) |
68 | 67 | sseld 3602 |
. . . . . . . 8
⊢ (𝜑 → (𝑏 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) → 𝑏 ∈ (ℙ ×
ℕ))) |
69 | 66, 68 | anim12d 586 |
. . . . . . 7
⊢ (𝜑 → ((𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ∧ 𝑏 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾)) → (𝑎 ∈ (ℙ × ℕ) ∧ 𝑏 ∈ (ℙ ×
ℕ)))) |
70 | | 1st2nd2 7205 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (ℙ ×
ℕ) → 𝑎 =
〈(1st ‘𝑎), (2nd ‘𝑎)〉) |
71 | 70 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (ℙ ×
ℕ) → (↑‘𝑎) = (↑‘〈(1st
‘𝑎), (2nd
‘𝑎)〉)) |
72 | | df-ov 6653 |
. . . . . . . . . 10
⊢
((1st ‘𝑎)↑(2nd ‘𝑎)) =
(↑‘〈(1st ‘𝑎), (2nd ‘𝑎)〉) |
73 | 71, 72 | syl6eqr 2674 |
. . . . . . . . 9
⊢ (𝑎 ∈ (ℙ ×
ℕ) → (↑‘𝑎) = ((1st ‘𝑎)↑(2nd
‘𝑎))) |
74 | | 1st2nd2 7205 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (ℙ ×
ℕ) → 𝑏 =
〈(1st ‘𝑏), (2nd ‘𝑏)〉) |
75 | 74 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (ℙ ×
ℕ) → (↑‘𝑏) = (↑‘〈(1st
‘𝑏), (2nd
‘𝑏)〉)) |
76 | | df-ov 6653 |
. . . . . . . . . 10
⊢
((1st ‘𝑏)↑(2nd ‘𝑏)) =
(↑‘〈(1st ‘𝑏), (2nd ‘𝑏)〉) |
77 | 75, 76 | syl6eqr 2674 |
. . . . . . . . 9
⊢ (𝑏 ∈ (ℙ ×
ℕ) → (↑‘𝑏) = ((1st ‘𝑏)↑(2nd
‘𝑏))) |
78 | 73, 77 | eqeqan12d 2638 |
. . . . . . . 8
⊢ ((𝑎 ∈ (ℙ ×
ℕ) ∧ 𝑏 ∈
(ℙ × ℕ)) → ((↑‘𝑎) = (↑‘𝑏) ↔ ((1st ‘𝑎)↑(2nd
‘𝑎)) =
((1st ‘𝑏)↑(2nd ‘𝑏)))) |
79 | | xp1st 7198 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (ℙ ×
ℕ) → (1st ‘𝑎) ∈ ℙ) |
80 | | xp2nd 7199 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (ℙ ×
ℕ) → (2nd ‘𝑎) ∈ ℕ) |
81 | 79, 80 | jca 554 |
. . . . . . . . 9
⊢ (𝑎 ∈ (ℙ ×
ℕ) → ((1st ‘𝑎) ∈ ℙ ∧ (2nd
‘𝑎) ∈
ℕ)) |
82 | | xp1st 7198 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (ℙ ×
ℕ) → (1st ‘𝑏) ∈ ℙ) |
83 | | xp2nd 7199 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (ℙ ×
ℕ) → (2nd ‘𝑏) ∈ ℕ) |
84 | 82, 83 | jca 554 |
. . . . . . . . 9
⊢ (𝑏 ∈ (ℙ ×
ℕ) → ((1st ‘𝑏) ∈ ℙ ∧ (2nd
‘𝑏) ∈
ℕ)) |
85 | | prmexpb 15430 |
. . . . . . . . . 10
⊢
((((1st ‘𝑎) ∈ ℙ ∧ (1st
‘𝑏) ∈ ℙ)
∧ ((2nd ‘𝑎) ∈ ℕ ∧ (2nd
‘𝑏) ∈ ℕ))
→ (((1st ‘𝑎)↑(2nd ‘𝑎)) = ((1st
‘𝑏)↑(2nd ‘𝑏)) ↔ ((1st
‘𝑎) = (1st
‘𝑏) ∧
(2nd ‘𝑎) =
(2nd ‘𝑏)))) |
86 | 85 | an4s 869 |
. . . . . . . . 9
⊢
((((1st ‘𝑎) ∈ ℙ ∧ (2nd
‘𝑎) ∈ ℕ)
∧ ((1st ‘𝑏) ∈ ℙ ∧ (2nd
‘𝑏) ∈ ℕ))
→ (((1st ‘𝑎)↑(2nd ‘𝑎)) = ((1st
‘𝑏)↑(2nd ‘𝑏)) ↔ ((1st
‘𝑎) = (1st
‘𝑏) ∧
(2nd ‘𝑎) =
(2nd ‘𝑏)))) |
87 | 81, 84, 86 | syl2an 494 |
. . . . . . . 8
⊢ ((𝑎 ∈ (ℙ ×
ℕ) ∧ 𝑏 ∈
(ℙ × ℕ)) → (((1st ‘𝑎)↑(2nd ‘𝑎)) = ((1st
‘𝑏)↑(2nd ‘𝑏)) ↔ ((1st
‘𝑎) = (1st
‘𝑏) ∧
(2nd ‘𝑎) =
(2nd ‘𝑏)))) |
88 | | xpopth 7207 |
. . . . . . . 8
⊢ ((𝑎 ∈ (ℙ ×
ℕ) ∧ 𝑏 ∈
(ℙ × ℕ)) → (((1st ‘𝑎) = (1st ‘𝑏) ∧ (2nd ‘𝑎) = (2nd ‘𝑏)) ↔ 𝑎 = 𝑏)) |
89 | 78, 87, 88 | 3bitrd 294 |
. . . . . . 7
⊢ ((𝑎 ∈ (ℙ ×
ℕ) ∧ 𝑏 ∈
(ℙ × ℕ)) → ((↑‘𝑎) = (↑‘𝑏) ↔ 𝑎 = 𝑏)) |
90 | 69, 89 | syl6 35 |
. . . . . 6
⊢ (𝜑 → ((𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ∧ 𝑏 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾)) → ((↑‘𝑎) = (↑‘𝑏) ↔ 𝑎 = 𝑏))) |
91 | 56, 90 | dom2lem 7995 |
. . . . 5
⊢ (𝜑 → (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)):∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾)–1-1→V) |
92 | | f1f1orn 6148 |
. . . . 5
⊢ ((𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)):∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾)–1-1→V → (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)):∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾)–1-1-onto→ran
(𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) |
93 | 91, 92 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)):∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾)–1-1-onto→ran
(𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) |
94 | | fveq2 6191 |
. . . . . 6
⊢ (𝑎 = 𝑧 → (↑‘𝑎) = (↑‘𝑧)) |
95 | | eqid 2622 |
. . . . . 6
⊢ (𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) = (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) |
96 | | fvex 6201 |
. . . . . 6
⊢
(↑‘𝑧)
∈ V |
97 | 94, 95, 96 | fvmpt 6282 |
. . . . 5
⊢ (𝑧 ∈ ∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾) → ((𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))‘𝑧) = (↑‘𝑧)) |
98 | 97 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾)) → ((𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))‘𝑧) = (↑‘𝑧)) |
99 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 〈𝑝, 𝑘〉 → (↑‘𝑎) = (↑‘〈𝑝, 𝑘〉)) |
100 | 99, 3 | syl6eqr 2674 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 〈𝑝, 𝑘〉 → (↑‘𝑎) = (𝑝↑𝑘)) |
101 | 100 | eleq1d 2686 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 〈𝑝, 𝑘〉 → ((↑‘𝑎) ∈ 𝐴 ↔ (𝑝↑𝑘) ∈ 𝐴)) |
102 | 36, 101 | syl5ibrcom 237 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾)) → (𝑎 = 〈𝑝, 𝑘〉 → (↑‘𝑎) ∈ 𝐴)) |
103 | 102 | impancom 456 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 = 〈𝑝, 𝑘〉) → ((𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾) → (↑‘𝑎) ∈ 𝐴)) |
104 | 103 | expimpd 629 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑎 = 〈𝑝, 𝑘〉 ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾)) → (↑‘𝑎) ∈ 𝐴)) |
105 | 104 | exlimdvv 1862 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑝∃𝑘(𝑎 = 〈𝑝, 𝑘〉 ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾)) → (↑‘𝑎) ∈ 𝐴)) |
106 | 57, 105 | syl5bi 232 |
. . . . . . . . 9
⊢ (𝜑 → (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) → (↑‘𝑎) ∈ 𝐴)) |
107 | 106 | imp 445 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾)) → (↑‘𝑎) ∈ 𝐴) |
108 | 107, 95 | fmptd 6385 |
. . . . . . 7
⊢ (𝜑 → (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)):∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾)⟶𝐴) |
109 | | frn 6053 |
. . . . . . 7
⊢ ((𝑎 ∈ ∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)):∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾)⟶𝐴 → ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ⊆ 𝐴) |
110 | 108, 109 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ⊆ 𝐴) |
111 | 110 | sselda 3603 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑦 ∈ 𝐴) |
112 | 45 | nfel1 2779 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ |
113 | 46 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ)) |
114 | 112, 113 | rspc 3303 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ)) |
115 | 38, 114 | mpan9 486 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ) |
116 | 111, 115 | syldan 487 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ) |
117 | 48, 54, 93, 98, 116 | fsumf1o 14454 |
. . 3
⊢ (𝜑 → Σ𝑦 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))⦋𝑦 / 𝑥⦌𝐵 = Σ𝑧 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾)⦋(↑‘𝑧) / 𝑥⦌𝐵) |
118 | 47, 117 | syl5eq 2668 |
. 2
⊢ (𝜑 → Σ𝑥 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑧 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾)⦋(↑‘𝑧) / 𝑥⦌𝐵) |
119 | 110 | sselda 3603 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝑥 ∈ 𝐴) |
120 | 119, 37 | syldan 487 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 ∈ ℂ) |
121 | | eldif 3584 |
. . . . 5
⊢ (𝑥 ∈ (𝐴 ∖ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))) |
122 | 95, 55 | elrnmpti 5376 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ ∃𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾)𝑥 = (↑‘𝑎)) |
123 | 100 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ (𝑎 = 〈𝑝, 𝑘〉 → (𝑥 = (↑‘𝑎) ↔ 𝑥 = (𝑝↑𝑘))) |
124 | 123 | rexiunxp 5262 |
. . . . . . . . . 10
⊢
(∃𝑎 ∈
∪ 𝑝 ∈ 𝑃 ({𝑝} × 𝐾)𝑥 = (↑‘𝑎) ↔ ∃𝑝 ∈ 𝑃 ∃𝑘 ∈ 𝐾 𝑥 = (𝑝↑𝑘)) |
125 | 122, 124 | bitri 264 |
. . . . . . . . 9
⊢ (𝑥 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ ∃𝑝 ∈ 𝑃 ∃𝑘 ∈ 𝐾 𝑥 = (𝑝↑𝑘)) |
126 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = (𝑝↑𝑘)) → 𝑥 = (𝑝↑𝑘)) |
127 | | simplr 792 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = (𝑝↑𝑘)) → 𝑥 ∈ 𝐴) |
128 | 126, 127 | eqeltrrd 2702 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = (𝑝↑𝑘)) → (𝑝↑𝑘) ∈ 𝐴) |
129 | 13 | rbaibd 949 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝↑𝑘) ∈ 𝐴) → ((𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))) |
130 | 129 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑝↑𝑘) ∈ 𝐴) → ((𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))) |
131 | 128, 130 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = (𝑝↑𝑘)) → ((𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾) ↔ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))) |
132 | 131 | pm5.32da 673 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 = (𝑝↑𝑘) ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾)) ↔ (𝑥 = (𝑝↑𝑘) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)))) |
133 | | ancom 466 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾) ∧ 𝑥 = (𝑝↑𝑘)) ↔ (𝑥 = (𝑝↑𝑘) ∧ (𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾))) |
134 | | ancom 466 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝↑𝑘)) ↔ (𝑥 = (𝑝↑𝑘) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))) |
135 | 132, 133,
134 | 3bitr4g 303 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾) ∧ 𝑥 = (𝑝↑𝑘)) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝↑𝑘)))) |
136 | 135 | 2exbidv 1852 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑝∃𝑘((𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾) ∧ 𝑥 = (𝑝↑𝑘)) ↔ ∃𝑝∃𝑘((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝↑𝑘)))) |
137 | | r2ex 3061 |
. . . . . . . . . . 11
⊢
(∃𝑝 ∈
𝑃 ∃𝑘 ∈ 𝐾 𝑥 = (𝑝↑𝑘) ↔ ∃𝑝∃𝑘((𝑝 ∈ 𝑃 ∧ 𝑘 ∈ 𝐾) ∧ 𝑥 = (𝑝↑𝑘))) |
138 | | r2ex 3061 |
. . . . . . . . . . 11
⊢
(∃𝑝 ∈
ℙ ∃𝑘 ∈
ℕ 𝑥 = (𝑝↑𝑘) ↔ ∃𝑝∃𝑘((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 = (𝑝↑𝑘))) |
139 | 136, 137,
138 | 3bitr4g 303 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑝 ∈ 𝑃 ∃𝑘 ∈ 𝐾 𝑥 = (𝑝↑𝑘) ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝↑𝑘))) |
140 | | fsumvma.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
141 | 140 | sselda 3603 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℕ) |
142 | | isppw2 24841 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ →
((Λ‘𝑥) ≠ 0
↔ ∃𝑝 ∈
ℙ ∃𝑘 ∈
ℕ 𝑥 = (𝑝↑𝑘))) |
143 | 141, 142 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((Λ‘𝑥) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝑥 = (𝑝↑𝑘))) |
144 | 139, 143 | bitr4d 271 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑝 ∈ 𝑃 ∃𝑘 ∈ 𝐾 𝑥 = (𝑝↑𝑘) ↔ (Λ‘𝑥) ≠ 0)) |
145 | 125, 144 | syl5bb 272 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)) ↔ (Λ‘𝑥) ≠ 0)) |
146 | 145 | necon2bbid 2837 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((Λ‘𝑥) = 0 ↔ ¬ 𝑥 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))) |
147 | 146 | pm5.32da 673 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ (Λ‘𝑥) = 0) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))))) |
148 | | fsumvma.7 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0) |
149 | 148 | ex 450 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ (Λ‘𝑥) = 0) → 𝐵 = 0)) |
150 | 147, 149 | sylbird 250 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 = 0)) |
151 | 121, 150 | syl5bi 232 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))) → 𝐵 = 0)) |
152 | 151 | imp 445 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎)))) → 𝐵 = 0) |
153 | 110, 120,
152, 11 | fsumss 14456 |
. 2
⊢ (𝜑 → Σ𝑥 ∈ ran (𝑎 ∈ ∪
𝑝 ∈ 𝑃 ({𝑝} × 𝐾) ↦ (↑‘𝑎))𝐵 = Σ𝑥 ∈ 𝐴 𝐵) |
154 | 43, 118, 153 | 3eqtr2rd 2663 |
1
⊢ (𝜑 → Σ𝑥 ∈ 𝐴 𝐵 = Σ𝑝 ∈ 𝑃 Σ𝑘 ∈ 𝐾 𝐶) |