MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq3 Structured version   Visualization version   GIF version

Theorem itg2i1fseq3 23524
Description: Special case of itg2i1fseq2 23523: if the integral of 𝐹 is a real number, then the standard limit relation holds on the integrals of simple functions approaching 𝐹. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
itg2i1fseq3.7 (𝜑 → (∫2𝐹) ∈ ℝ)
Assertion
Ref Expression
itg2i1fseq3 (𝜑𝑆 ⇝ (∫2𝐹))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐹   𝑃,𝑚,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)

Proof of Theorem itg2i1fseq3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itg2i1fseq.1 . 2 (𝜑𝐹 ∈ MblFn)
2 itg2i1fseq.2 . 2 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 itg2i1fseq.3 . 2 (𝜑𝑃:ℕ⟶dom ∫1)
4 itg2i1fseq.4 . 2 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))))
5 itg2i1fseq.5 . 2 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
6 itg2i1fseq.6 . 2 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
7 itg2i1fseq3.7 . 2 (𝜑 → (∫2𝐹) ∈ ℝ)
8 icossicc 12260 . . . . 5 (0[,)+∞) ⊆ (0[,]+∞)
9 fss 6056 . . . . 5 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
102, 8, 9sylancl 694 . . . 4 (𝜑𝐹:ℝ⟶(0[,]+∞))
1110adantr 481 . . 3 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℝ⟶(0[,]+∞))
123ffvelrnda 6359 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∈ dom ∫1)
131, 2, 3, 4, 5itg2i1fseqle 23521 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑃𝑘) ∘𝑟𝐹)
14 itg2ub 23500 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑃𝑘) ∈ dom ∫1 ∧ (𝑃𝑘) ∘𝑟𝐹) → (∫1‘(𝑃𝑘)) ≤ (∫2𝐹))
1511, 12, 13, 14syl3anc 1326 . 2 ((𝜑𝑘 ∈ ℕ) → (∫1‘(𝑃𝑘)) ≤ (∫2𝐹))
161, 2, 3, 4, 5, 6, 7, 15itg2i1fseq2 23523 1 (𝜑𝑆 ⇝ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  𝑟 cofr 6896  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  +∞cpnf 10071  cle 10075  cn 11020  [,)cico 12177  [,]cicc 12178  cli 14215  MblFncmbf 23383  1citg1 23384  2citg2 23385  0𝑝c0p 23436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-0p 23437
This theorem is referenced by:  itg2addlem  23525
  Copyright terms: Public domain W3C validator