![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > konigsberglem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for konigsberg 27119: Vertices 0, 1, 3 are vertices of odd degree. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.) |
Ref | Expression |
---|---|
konigsberg.v | ⊢ 𝑉 = (0...3) |
konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
Ref | Expression |
---|---|
konigsberglem4 | ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 11310 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
2 | 0elfz 12436 | . . . . . 6 ⊢ (3 ∈ ℕ0 → 0 ∈ (0...3)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...3) |
4 | konigsberg.v | . . . . 5 ⊢ 𝑉 = (0...3) | |
5 | 3, 4 | eleqtrri 2700 | . . . 4 ⊢ 0 ∈ 𝑉 |
6 | n2dvds3 15107 | . . . . 5 ⊢ ¬ 2 ∥ 3 | |
7 | konigsberg.e | . . . . . . 7 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
8 | konigsberg.g | . . . . . . 7 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
9 | 4, 7, 8 | konigsberglem1 27114 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘0) = 3 |
10 | 9 | breq2i 4661 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘0) ↔ 2 ∥ 3) |
11 | 6, 10 | mtbir 313 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0) |
12 | fveq2 6191 | . . . . . . 7 ⊢ (𝑥 = 0 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘0)) | |
13 | 12 | breq2d 4665 | . . . . . 6 ⊢ (𝑥 = 0 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
14 | 13 | notbid 308 | . . . . 5 ⊢ (𝑥 = 0 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
15 | 14 | elrab 3363 | . . . 4 ⊢ (0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (0 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘0))) |
16 | 5, 11, 15 | mpbir2an 955 | . . 3 ⊢ 0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
17 | 1nn0 11308 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
18 | 1le3 11244 | . . . . . 6 ⊢ 1 ≤ 3 | |
19 | elfz2nn0 12431 | . . . . . 6 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
20 | 17, 1, 18, 19 | mpbir3an 1244 | . . . . 5 ⊢ 1 ∈ (0...3) |
21 | 20, 4 | eleqtrri 2700 | . . . 4 ⊢ 1 ∈ 𝑉 |
22 | 4, 7, 8 | konigsberglem2 27115 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘1) = 3 |
23 | 22 | breq2i 4661 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘1) ↔ 2 ∥ 3) |
24 | 6, 23 | mtbir 313 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1) |
25 | fveq2 6191 | . . . . . . 7 ⊢ (𝑥 = 1 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘1)) | |
26 | 25 | breq2d 4665 | . . . . . 6 ⊢ (𝑥 = 1 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
27 | 26 | notbid 308 | . . . . 5 ⊢ (𝑥 = 1 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
28 | 27 | elrab 3363 | . . . 4 ⊢ (1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (1 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘1))) |
29 | 21, 24, 28 | mpbir2an 955 | . . 3 ⊢ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
30 | 3re 11094 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
31 | 30 | leidi 10562 | . . . . . 6 ⊢ 3 ≤ 3 |
32 | elfz2nn0 12431 | . . . . . 6 ⊢ (3 ∈ (0...3) ↔ (3 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 3 ≤ 3)) | |
33 | 1, 1, 31, 32 | mpbir3an 1244 | . . . . 5 ⊢ 3 ∈ (0...3) |
34 | 33, 4 | eleqtrri 2700 | . . . 4 ⊢ 3 ∈ 𝑉 |
35 | 4, 7, 8 | konigsberglem3 27116 | . . . . . 6 ⊢ ((VtxDeg‘𝐺)‘3) = 3 |
36 | 35 | breq2i 4661 | . . . . 5 ⊢ (2 ∥ ((VtxDeg‘𝐺)‘3) ↔ 2 ∥ 3) |
37 | 6, 36 | mtbir 313 | . . . 4 ⊢ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3) |
38 | fveq2 6191 | . . . . . . 7 ⊢ (𝑥 = 3 → ((VtxDeg‘𝐺)‘𝑥) = ((VtxDeg‘𝐺)‘3)) | |
39 | 38 | breq2d 4665 | . . . . . 6 ⊢ (𝑥 = 3 → (2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
40 | 39 | notbid 308 | . . . . 5 ⊢ (𝑥 = 3 → (¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
41 | 40 | elrab 3363 | . . . 4 ⊢ (3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ↔ (3 ∈ 𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘𝐺)‘3))) |
42 | 34, 37, 41 | mpbir2an 955 | . . 3 ⊢ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
43 | 16, 29, 42 | 3pm3.2i 1239 | . 2 ⊢ (0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
44 | c0ex 10034 | . . 3 ⊢ 0 ∈ V | |
45 | 1ex 10035 | . . 3 ⊢ 1 ∈ V | |
46 | 3ex 11096 | . . 3 ⊢ 3 ∈ V | |
47 | 44, 45, 46 | tpss 4368 | . 2 ⊢ ((0 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 1 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∧ 3 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
48 | 43, 47 | mpbi 220 | 1 ⊢ {0, 1, 3} ⊆ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {crab 2916 ⊆ wss 3574 {cpr 4179 {ctp 4181 〈cop 4183 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 ≤ cle 10075 2c2 11070 3c3 11071 ℕ0cn0 11292 ...cfz 12326 〈“cs7 13591 ∥ cdvds 14983 VtxDegcvtxdg 26361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-xadd 11947 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-concat 13301 df-s1 13302 df-s2 13593 df-s3 13594 df-s4 13595 df-s5 13596 df-s6 13597 df-s7 13598 df-dvds 14984 df-vtx 25876 df-iedg 25877 df-vtxdg 26362 |
This theorem is referenced by: konigsberglem5 27118 |
Copyright terms: Public domain | W3C validator |