| Step | Hyp | Ref
| Expression |
| 1 | | mamucl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 2 | | eqid 2622 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 3 | | eqid 2622 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 4 | | mamuvs1.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
| 5 | | mamucl.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 6 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑅 ∈ Ring) |
| 7 | | mamudi.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 8 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑁 ∈ Fin) |
| 9 | | mamuvs1.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 10 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑋 ∈ 𝐵) |
| 11 | 5 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 12 | | mamuvs1.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
| 13 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁)) → 𝑌:(𝑀 × 𝑁)⟶𝐵) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌:(𝑀 × 𝑁)⟶𝐵) |
| 15 | 14 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑌:(𝑀 × 𝑁)⟶𝐵) |
| 16 | | simplrl 800 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑀) |
| 17 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 18 | 15, 16, 17 | fovrnd 6806 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑌𝑗) ∈ 𝐵) |
| 19 | | mamuvs1.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
| 20 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
| 22 | 21 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
| 23 | | simplrr 801 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑂) |
| 24 | 22, 17, 23 | fovrnd 6806 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑍𝑘) ∈ 𝐵) |
| 25 | 1, 4 | ringcl 18561 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵) |
| 26 | 11, 18, 24, 25 | syl3anc 1326 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵) |
| 27 | | eqid 2622 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) |
| 28 | | ovexd 6680 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ V) |
| 29 | | fvexd 6203 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (0g‘𝑅) ∈ V) |
| 30 | 27, 8, 28, 29 | fsuppmptdm 8286 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) finSupp (0g‘𝑅)) |
| 31 | 1, 2, 3, 4, 6, 8, 10, 26, 30 | gsummulc2 18607 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))) = (𝑋 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))) |
| 32 | | df-ov 6653 |
. . . . . . . . . 10
⊢ (𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) = ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)‘〈𝑖, 𝑗〉) |
| 33 | | simprl 794 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑖 ∈ 𝑀) |
| 34 | | opelxpi 5148 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑁) → 〈𝑖, 𝑗〉 ∈ (𝑀 × 𝑁)) |
| 35 | 33, 34 | sylan 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 〈𝑖, 𝑗〉 ∈ (𝑀 × 𝑁)) |
| 36 | | mamudi.m |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ Fin) |
| 37 | | xpfi 8231 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin) |
| 38 | 36, 7, 37 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 × 𝑁) ∈ Fin) |
| 39 | 38 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑀 × 𝑁) ∈ Fin) |
| 40 | 9 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐵) |
| 41 | | ffn 6045 |
. . . . . . . . . . . . . 14
⊢ (𝑌:(𝑀 × 𝑁)⟶𝐵 → 𝑌 Fn (𝑀 × 𝑁)) |
| 42 | 12, 13, 41 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 Fn (𝑀 × 𝑁)) |
| 43 | 42 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑌 Fn (𝑀 × 𝑁)) |
| 44 | | df-ov 6653 |
. . . . . . . . . . . . . 14
⊢ (𝑖𝑌𝑗) = (𝑌‘〈𝑖, 𝑗〉) |
| 45 | 44 | eqcomi 2631 |
. . . . . . . . . . . . 13
⊢ (𝑌‘〈𝑖, 𝑗〉) = (𝑖𝑌𝑗) |
| 46 | 45 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) ∧ 〈𝑖, 𝑗〉 ∈ (𝑀 × 𝑁)) → (𝑌‘〈𝑖, 𝑗〉) = (𝑖𝑌𝑗)) |
| 47 | 39, 40, 43, 46 | ofc1 6920 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) ∧ 〈𝑖, 𝑗〉 ∈ (𝑀 × 𝑁)) → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)‘〈𝑖, 𝑗〉) = (𝑋 · (𝑖𝑌𝑗))) |
| 48 | 35, 47 | mpdan 702 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)‘〈𝑖, 𝑗〉) = (𝑋 · (𝑖𝑌𝑗))) |
| 49 | 32, 48 | syl5eq 2668 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) = (𝑋 · (𝑖𝑌𝑗))) |
| 50 | 49 | oveq1d 6665 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)) = ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘))) |
| 51 | 1, 4 | ringass 18564 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))) |
| 52 | 11, 40, 18, 24, 51 | syl13anc 1328 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))) |
| 53 | 50, 52 | eqtrd 2656 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))) |
| 54 | 53 | mpteq2dva 4744 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘))) = (𝑗 ∈ 𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))) |
| 55 | 54 | oveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))) |
| 56 | | mamudi.f |
. . . . . . 7
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) |
| 57 | 36 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑀 ∈ Fin) |
| 58 | | mamudi.o |
. . . . . . . 8
⊢ (𝜑 → 𝑂 ∈ Fin) |
| 59 | 58 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑂 ∈ Fin) |
| 60 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑌 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
| 61 | 19 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
| 62 | | simprr 796 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑘 ∈ 𝑂) |
| 63 | 56, 1, 4, 6, 57, 8,
59, 60, 61, 33, 62 | mamufv 20193 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑌𝐹𝑍)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))) |
| 64 | 63 | oveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)) = (𝑋 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))) |
| 65 | 31, 55, 64 | 3eqtr4d 2666 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)))) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘))) |
| 66 | | fconst6g 6094 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐵 → ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵) |
| 67 | 9, 66 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵) |
| 68 | | fvex 6201 |
. . . . . . . . . 10
⊢
(Base‘𝑅)
∈ V |
| 69 | 1, 68 | eqeltri 2697 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
| 70 | | elmapg 7870 |
. . . . . . . . 9
⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑁) ∈ Fin) → (((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁)) ↔ ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵)) |
| 71 | 69, 38, 70 | sylancr 695 |
. . . . . . . 8
⊢ (𝜑 → (((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁)) ↔ ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵)) |
| 72 | 67, 71 | mpbird 247 |
. . . . . . 7
⊢ (𝜑 → ((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
| 73 | 1, 4 | ringvcl 20204 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁)) ∧ 𝑌 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) → (((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
| 74 | 5, 72, 12, 73 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → (((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
| 75 | 74 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
| 76 | 56, 1, 4, 6, 57, 8,
59, 75, 61, 33, 62 | mamufv 20193 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘))))) |
| 77 | | df-ov 6653 |
. . . . 5
⊢ (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘) = ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))‘〈𝑖, 𝑘〉) |
| 78 | | opelxpi 5148 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂) → 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) |
| 79 | 78 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) |
| 80 | | xpfi 8231 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin) |
| 81 | 36, 58, 80 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 × 𝑂) ∈ Fin) |
| 82 | 81 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑀 × 𝑂) ∈ Fin) |
| 83 | 1, 5, 56, 36, 7, 58, 12, 19 | mamucl 20207 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌𝐹𝑍) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
| 84 | | elmapi 7879 |
. . . . . . . . 9
⊢ ((𝑌𝐹𝑍) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) → (𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵) |
| 85 | | ffn 6045 |
. . . . . . . . 9
⊢ ((𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂)) |
| 86 | 83, 84, 85 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂)) |
| 87 | 86 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂)) |
| 88 | | df-ov 6653 |
. . . . . . . . 9
⊢ (𝑖(𝑌𝐹𝑍)𝑘) = ((𝑌𝐹𝑍)‘〈𝑖, 𝑘〉) |
| 89 | 88 | eqcomi 2631 |
. . . . . . . 8
⊢ ((𝑌𝐹𝑍)‘〈𝑖, 𝑘〉) = (𝑖(𝑌𝐹𝑍)𝑘) |
| 90 | 89 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) → ((𝑌𝐹𝑍)‘〈𝑖, 𝑘〉) = (𝑖(𝑌𝐹𝑍)𝑘)) |
| 91 | 82, 10, 87, 90 | ofc1 6920 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) → ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))‘〈𝑖, 𝑘〉) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘))) |
| 92 | 79, 91 | mpdan 702 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))‘〈𝑖, 𝑘〉) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘))) |
| 93 | 77, 92 | syl5eq 2668 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘))) |
| 94 | 65, 76, 93 | 3eqtr4d 2666 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘)) |
| 95 | 94 | ralrimivva 2971 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘)) |
| 96 | 1, 5, 56, 36, 7, 58, 74, 19 | mamucl 20207 |
. . . 4
⊢ (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
| 97 | | elmapi 7879 |
. . . 4
⊢
(((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵) |
| 98 | | ffn 6045 |
. . . 4
⊢
(((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂)) |
| 99 | 96, 97, 98 | 3syl 18 |
. . 3
⊢ (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂)) |
| 100 | | fconst6g 6094 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵) |
| 101 | 9, 100 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵) |
| 102 | | elmapg 7870 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑂) ∈ Fin) → (((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵)) |
| 103 | 69, 81, 102 | sylancr 695 |
. . . . . 6
⊢ (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵)) |
| 104 | 101, 103 | mpbird 247 |
. . . . 5
⊢ (𝜑 → ((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
| 105 | 1, 4 | ringvcl 20204 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) ∧ (𝑌𝐹𝑍) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
| 106 | 5, 104, 83, 105 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
| 107 | | elmapi 7879 |
. . . 4
⊢ ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵) |
| 108 | | ffn 6045 |
. . . 4
⊢ ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂)) |
| 109 | 106, 107,
108 | 3syl 18 |
. . 3
⊢ (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂)) |
| 110 | | eqfnov2 6767 |
. . 3
⊢
((((((𝑀 ×
𝑁) × {𝑋}) ∘𝑓
·
𝑌)𝐹𝑍) Fn (𝑀 × 𝑂) ∧ (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂)) → (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘))) |
| 111 | 99, 109, 110 | syl2anc 693 |
. 2
⊢ (𝜑 → (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘))) |
| 112 | 95, 111 | mpbird 247 |
1
⊢ (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))) |