| Step | Hyp | Ref
| Expression |
| 1 | | mamucl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 2 | | mamudir.p |
. . . . . 6
⊢ + =
(+g‘𝑅) |
| 3 | | mamucl.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 4 | | ringcmn 18581 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 6 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑅 ∈ CMnd) |
| 7 | | mamudi.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 8 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑁 ∈ Fin) |
| 9 | 3 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 10 | | mamudir.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
| 11 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 13 | 12 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 14 | | simplrl 800 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑀) |
| 15 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 16 | 13, 14, 15 | fovrnd 6806 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
| 17 | | mamudir.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
| 18 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌:(𝑁 × 𝑂)⟶𝐵) |
| 20 | 19 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑌:(𝑁 × 𝑂)⟶𝐵) |
| 21 | | simplrr 801 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑂) |
| 22 | 20, 15, 21 | fovrnd 6806 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑌𝑘) ∈ 𝐵) |
| 23 | | eqid 2622 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 24 | 1, 23 | ringcl 18561 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
| 25 | 9, 16, 22, 24 | syl3anc 1326 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
| 26 | | mamudir.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
| 27 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
| 29 | 28 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
| 30 | 29, 15, 21 | fovrnd 6806 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑍𝑘) ∈ 𝐵) |
| 31 | 1, 23 | ringcl 18561 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) |
| 32 | 9, 16, 30, 31 | syl3anc 1326 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) |
| 33 | | eqid 2622 |
. . . . . 6
⊢ (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) |
| 34 | | eqid 2622 |
. . . . . 6
⊢ (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) |
| 35 | 1, 2, 6, 8, 25, 32, 33, 34 | gsummptfidmadd2 18326 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg ((𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) ∘𝑓 + (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) = ((𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
| 36 | | ffn 6045 |
. . . . . . . . . . . . 13
⊢ (𝑌:(𝑁 × 𝑂)⟶𝐵 → 𝑌 Fn (𝑁 × 𝑂)) |
| 37 | 20, 36 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑌 Fn (𝑁 × 𝑂)) |
| 38 | | ffn 6045 |
. . . . . . . . . . . . 13
⊢ (𝑍:(𝑁 × 𝑂)⟶𝐵 → 𝑍 Fn (𝑁 × 𝑂)) |
| 39 | 29, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑍 Fn (𝑁 × 𝑂)) |
| 40 | | mamudi.o |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑂 ∈ Fin) |
| 41 | | xpfi 8231 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin) |
| 42 | 7, 40, 41 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 × 𝑂) ∈ Fin) |
| 43 | 42 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑁 × 𝑂) ∈ Fin) |
| 44 | | opelxpi 5148 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑂) → 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) |
| 45 | 44 | ancoms 469 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝑂 ∧ 𝑗 ∈ 𝑁) → 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) |
| 46 | 45 | adantll 750 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂) ∧ 𝑗 ∈ 𝑁) → 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) |
| 47 | 46 | adantll 750 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) |
| 48 | | fnfvof 6911 |
. . . . . . . . . . . 12
⊢ (((𝑌 Fn (𝑁 × 𝑂) ∧ 𝑍 Fn (𝑁 × 𝑂)) ∧ ((𝑁 × 𝑂) ∈ Fin ∧ 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂))) → ((𝑌 ∘𝑓 + 𝑍)‘〈𝑗, 𝑘〉) = ((𝑌‘〈𝑗, 𝑘〉) + (𝑍‘〈𝑗, 𝑘〉))) |
| 49 | 37, 39, 43, 47, 48 | syl22anc 1327 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑌 ∘𝑓 + 𝑍)‘〈𝑗, 𝑘〉) = ((𝑌‘〈𝑗, 𝑘〉) + (𝑍‘〈𝑗, 𝑘〉))) |
| 50 | | df-ov 6653 |
. . . . . . . . . . 11
⊢ (𝑗(𝑌 ∘𝑓 + 𝑍)𝑘) = ((𝑌 ∘𝑓 + 𝑍)‘〈𝑗, 𝑘〉) |
| 51 | | df-ov 6653 |
. . . . . . . . . . . 12
⊢ (𝑗𝑌𝑘) = (𝑌‘〈𝑗, 𝑘〉) |
| 52 | | df-ov 6653 |
. . . . . . . . . . . 12
⊢ (𝑗𝑍𝑘) = (𝑍‘〈𝑗, 𝑘〉) |
| 53 | 51, 52 | oveq12i 6662 |
. . . . . . . . . . 11
⊢ ((𝑗𝑌𝑘) + (𝑗𝑍𝑘)) = ((𝑌‘〈𝑗, 𝑘〉) + (𝑍‘〈𝑗, 𝑘〉)) |
| 54 | 49, 50, 53 | 3eqtr4g 2681 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑗(𝑌 ∘𝑓 + 𝑍)𝑘) = ((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) |
| 55 | 54 | oveq2d 6666 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘𝑓 + 𝑍)𝑘)) = ((𝑖𝑋𝑗)(.r‘𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘)))) |
| 56 | 1, 2, 23 | ringdi 18566 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗)(.r‘𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
| 57 | 9, 16, 22, 30, 56 | syl13anc 1328 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
| 58 | 55, 57 | eqtrd 2656 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘𝑓 + 𝑍)𝑘)) = (((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
| 59 | 58 | mpteq2dva 4744 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘𝑓 + 𝑍)𝑘))) = (𝑗 ∈ 𝑁 ↦ (((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
| 60 | | eqidd 2623 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) |
| 61 | | eqidd 2623 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
| 62 | 8, 25, 32, 60, 61 | offval2 6914 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → ((𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) ∘𝑓 + (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) = (𝑗 ∈ 𝑁 ↦ (((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
| 63 | 59, 62 | eqtr4d 2659 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘𝑓 + 𝑍)𝑘))) = ((𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) ∘𝑓 + (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
| 64 | 63 | oveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘𝑓 + 𝑍)𝑘)))) = (𝑅 Σg ((𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) ∘𝑓 + (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
| 65 | | mamudi.f |
. . . . . . 7
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) |
| 66 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑅 ∈ Ring) |
| 67 | | mamudi.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ Fin) |
| 68 | 67 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑀 ∈ Fin) |
| 69 | 40 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑂 ∈ Fin) |
| 70 | 10 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
| 71 | 17 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
| 72 | | simprl 794 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑖 ∈ 𝑀) |
| 73 | | simprr 796 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑘 ∈ 𝑂) |
| 74 | 65, 1, 23, 66, 68, 8, 69, 70, 71, 72, 73 | mamufv 20193 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹𝑌)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) |
| 75 | 26 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
| 76 | 65, 1, 23, 66, 68, 8, 69, 70, 75, 72, 73 | mamufv 20193 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
| 77 | 74, 76 | oveq12d 6668 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = ((𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
| 78 | 35, 64, 77 | 3eqtr4d 2666 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘𝑓 + 𝑍)𝑘)))) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘))) |
| 79 | | ringmnd 18556 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 80 | 3, 79 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 81 | 1, 2 | mndvcl 20197 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) → (𝑌 ∘𝑓 + 𝑍) ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
| 82 | 80, 17, 26, 81 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → (𝑌 ∘𝑓 + 𝑍) ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
| 83 | 82 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑌 ∘𝑓 + 𝑍) ∈ (𝐵 ↑𝑚 (𝑁 × 𝑂))) |
| 84 | 65, 1, 23, 66, 68, 8, 69, 70, 83, 72, 73 | mamufv 20193 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹(𝑌 ∘𝑓 + 𝑍))𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘𝑓 + 𝑍)𝑘))))) |
| 85 | 1, 3, 65, 67, 7, 40, 10, 17 | mamucl 20207 |
. . . . . . . 8
⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
| 86 | | elmapi 7879 |
. . . . . . . 8
⊢ ((𝑋𝐹𝑌) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) → (𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵) |
| 87 | | ffn 6045 |
. . . . . . . 8
⊢ ((𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂)) |
| 88 | 85, 86, 87 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂)) |
| 89 | 88 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂)) |
| 90 | 1, 3, 65, 67, 7, 40, 10, 26 | mamucl 20207 |
. . . . . . . 8
⊢ (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
| 91 | | elmapi 7879 |
. . . . . . . 8
⊢ ((𝑋𝐹𝑍) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵) |
| 92 | | ffn 6045 |
. . . . . . . 8
⊢ ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) |
| 93 | 90, 91, 92 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) |
| 94 | 93 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) |
| 95 | | xpfi 8231 |
. . . . . . . 8
⊢ ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin) |
| 96 | 67, 40, 95 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝑀 × 𝑂) ∈ Fin) |
| 97 | 96 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑀 × 𝑂) ∈ Fin) |
| 98 | | opelxpi 5148 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂) → 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) |
| 99 | 98 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) |
| 100 | | fnfvof 6911 |
. . . . . 6
⊢ ((((𝑋𝐹𝑌) Fn (𝑀 × 𝑂) ∧ (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) ∧ ((𝑀 × 𝑂) ∈ Fin ∧ 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂))) → (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))‘〈𝑖, 𝑘〉) = (((𝑋𝐹𝑌)‘〈𝑖, 𝑘〉) + ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉))) |
| 101 | 89, 94, 97, 99, 100 | syl22anc 1327 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))‘〈𝑖, 𝑘〉) = (((𝑋𝐹𝑌)‘〈𝑖, 𝑘〉) + ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉))) |
| 102 | | df-ov 6653 |
. . . . 5
⊢ (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘) = (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))‘〈𝑖, 𝑘〉) |
| 103 | | df-ov 6653 |
. . . . . 6
⊢ (𝑖(𝑋𝐹𝑌)𝑘) = ((𝑋𝐹𝑌)‘〈𝑖, 𝑘〉) |
| 104 | | df-ov 6653 |
. . . . . 6
⊢ (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉) |
| 105 | 103, 104 | oveq12i 6662 |
. . . . 5
⊢ ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = (((𝑋𝐹𝑌)‘〈𝑖, 𝑘〉) + ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉)) |
| 106 | 101, 102,
105 | 3eqtr4g 2681 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘))) |
| 107 | 78, 84, 106 | 3eqtr4d 2666 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹(𝑌 ∘𝑓 + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘)) |
| 108 | 107 | ralrimivva 2971 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖(𝑋𝐹(𝑌 ∘𝑓 + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘)) |
| 109 | 1, 3, 65, 67, 7, 40, 10, 82 | mamucl 20207 |
. . . 4
⊢ (𝜑 → (𝑋𝐹(𝑌 ∘𝑓 + 𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
| 110 | | elmapi 7879 |
. . . 4
⊢ ((𝑋𝐹(𝑌 ∘𝑓 + 𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) → (𝑋𝐹(𝑌 ∘𝑓 + 𝑍)):(𝑀 × 𝑂)⟶𝐵) |
| 111 | | ffn 6045 |
. . . 4
⊢ ((𝑋𝐹(𝑌 ∘𝑓 + 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(𝑌 ∘𝑓 + 𝑍)) Fn (𝑀 × 𝑂)) |
| 112 | 109, 110,
111 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝑋𝐹(𝑌 ∘𝑓 + 𝑍)) Fn (𝑀 × 𝑂)) |
| 113 | 1, 2 | mndvcl 20197 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ (𝑋𝐹𝑌) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
| 114 | 80, 85, 90, 113 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂))) |
| 115 | | elmapi 7879 |
. . . 4
⊢ (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ∈ (𝐵 ↑𝑚 (𝑀 × 𝑂)) → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵) |
| 116 | | ffn 6045 |
. . . 4
⊢ (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) |
| 117 | 114, 115,
116 | 3syl 18 |
. . 3
⊢ (𝜑 → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) |
| 118 | | eqfnov2 6767 |
. . 3
⊢ (((𝑋𝐹(𝑌 ∘𝑓 + 𝑍)) Fn (𝑀 × 𝑂) ∧ ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(𝑌 ∘𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖(𝑋𝐹(𝑌 ∘𝑓 + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘))) |
| 119 | 112, 117,
118 | syl2anc 693 |
. 2
⊢ (𝜑 → ((𝑋𝐹(𝑌 ∘𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖(𝑋𝐹(𝑌 ∘𝑓 + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘))) |
| 120 | 108, 119 | mpbird 247 |
1
⊢ (𝜑 → (𝑋𝐹(𝑌 ∘𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))) |